EuPRAXIA@SPARC_LAB

WA6 Status Report – FEL Integration & Performance

TDR Review Committee Meeting, June 6th 2022

Federico Nguyen on behalf of the WA6 Working Group

Workflow

- 1. Undulator specifications (\rightarrow see A. Petralia's talk)
- **2.** FEL Layout definition (\rightarrow see A. Ghigo's talk)
- 3. Beam optics analysis (\rightarrow this talk)
- 4. Baseline parameters simulation (\rightarrow this talk)
- 5. Tolerance analysis (\rightarrow to-do list)
- 6. Start to end simulation (\rightarrow to-do list)

FEL Layout definition

From the baseline electron beam parameters and the frozen undulator specifics \rightarrow Design of the undulator section, intra-module distance and FODO properties \rightarrow Focus on the red rectangle beam parameters (see WA1 C. Vaccarezza's talk)

Parameter	Symbol	Units	А	В	С	D (CDR)	E	
Charge	Q	рС	200	200	30	30	30	
Energy	E	GeV	0.996	1	1	1	1	
Peak current	I _{peak}	kA	1.6	0.7	?	1.8	800	
Bunch length	σz	μm	18.3	100	?	2	5	
Proj. norm. emittances (x/y)	ɛ _{n,x,y}	mm-mrad	1.85	?	?	1.7	3/4	
Slice, norm. emittances (x/y)	<pre> ɛ_{n,x,y} </pre>	mm-mrad	0.5	0.5	?	0.8	3/4 (1/1.2 at linac)	
Proj. energy spread	$\pmb{\sigma}_{\pmb{\delta}$ p	%	0.09	?	?	0.95	1.5	
Slice Energy spread	$\sigma_{\delta^{ m S}}$	%	0.02	0.01	?	0.05	0.06	
			AQUA	ARIA		AQUA/ARIA		

AQUA undulator magnetic lattice

AQUA @4nm with Apple-X: selectable polarization

focusing:
$$h_x = 2.3, h_y = -0.3$$

focusing: $h_x = h_y = 1$

EuPRAXIA@SPARC_LAB TDR Review – Federico Nguyen – June 6 2022

Quadrupole integral fields vs. E_{beam}

Towards approval of the adopted solution

ENEN

Linear Pol. Apple-X overall FEL performance

Tunability both in beam energy $\gamma m_e c^2$ and in undulator gap g_u weighted for N_y/pulse

Circular Pol. Apple-X overall FEL performance

$$\lambda_{\rm res} = \frac{\lambda_{\rm u}}{2\gamma^2} \left[1 + \mathbf{K}^2(\mathbf{g}_{\rm u}) \right]$$

Tunability both in beam energy $\gamma m_e c^2$ and in undulator gap g_u weighted for N_y/pulse

Electron beam used for FEL performance

- Average electron beam slice parameters are used to perform 3D time dependent simulations with the Genesis1.3_V2 code in 4 undulator + related magnetic lattice configurations: Linear & Circular polarizations, targeting 4nm & 5.75nm (K_{max})
- An ideal Gaussian current profile is assumed with I_{peak} = 1.8kA and Q = 30pC

AQUA FEL results with average beam parameters

working point	LP K_{max}	LP 4nm	$CP K_{max}$	CP 4nm
resonant λ [nm]	5.75	4.01	5.75	4.01
photon energy [eV]	215	309	215	309
matching $\langle \beta \rangle$ [m]	6	8	6	8
Pierce $\rho_{1D} \ [10^{-3}]$	1.81	1.35	2.04	1.46
gain length _{1D} [m]	0.559	0.788	0.405	0.566
satur. length [m]	16.78	23.40	14.33	20.81
satur. $\langle power \rangle$ [GW]	0.394	0.236	0.486	0.277
exit E_{pulse} [µJ]	23.90	11.56	32.95	13.73
exit bandwidth [%]	0.154	0.088	0.223	0.117
exit pulse $length_{RMS}$ [fs]	6.10	3.50	6.12	3.76
exit divergence [mrad]	0.032	0.023	0.031	0.022
exit trans. size $[\mu m]$	195	133	190	132
exit N_{γ} /pulse [10 ¹¹]	6.93	2.33	9.53	2.77

EuPRAXIA@SPARC_LAB TDR Review – Federico Nguyen – June 6 2022

Conclusions & outlook

- ✓ AQUA undulator line is designed, featuring the magnetic lattice, intramodule distance and FODO quadrupole integral strengths → same line is able to sustain E > 1 GeV beam energies
- Design of the full undulator line is going through the approval/blessing certification process
- ✓ Ideal reference electron beam values are used to perform 3D time dependent simulations: both LP and CP APPLE-X, at 4nm and at 5.75nm $K_{max} \rightarrow CP$ at 5.75nm allows to enter the realm of O(10¹²) N_γ/pulse → to be achieved at shorter λ with higher E_{beam} (or improved parameters → WA1)
- ✓ Now focus on the tolerance study and on the full S2E with electron macroparticles (<u>V. Petrillo, N. Mirian, M. Opromolla & A. Selce</u> will contribute on these)

Please, stay FEL-tuned! Thank you!

ENEL

EuPRAXIA@SPARC_LAB TDR Review – Federico Nguyen – June 6 2022