

I NOVANT'ANNI DELPROF. BELLOBONO

Deposizione di strutture di TiO2 gerarchicamente organizzate ad elevate area superficiale

Claudia Riccardi

Centro PlasmaPrometeo Dipartimento di Fisica G.Occhialini Università degli Studi di Milano-Bicocca

16 novembre 2022 - Milano, Aula Napoleonica Milano

Nanostructures in a thin film can... Greatly enhance mechanical, electrical, optical, catalytic properties But... requires a tailoring of the building blocks and of the growth process

Chemical Vapour Deposition (CVD)

Physical Vapour Deposition (PVD)

The nanostructure in a thin film can... Greatly enhance mechanical, electrical, optical, catalytic properties But... requires a tailoring of the building blocks and of the growth process

Chemical Vapour Deposition (CVD)

Physical Vapour Deposition (PVD)

Ideal technique:

- Control on nanostructure
- Control on chemical composition
- Efficient
- Flexibile
- Up-scalable

1

Plasma Assisted Supersonic Jet Deposition

STRATEGY: to separate the process in two different steps

- I: ICP plasma precursor dissociation particle formation (control of purity)
- II : Supersonic Jet particles acceleration (control of particle nucleation and morphology)

titanium precursors for tests

I. Biganzoli, J. Mod. Phys., 2012 4

ICP plasma

- High density Ar-O₂ plasma at low pressure
- Low potential inside the chamber
- Control on precursor oxidation and dissociation

Ar-O ₂ mixture	2:3
P _{plasma}	10 Pa
P _{deposition}	0.1-8 Pa
13.56 MHz Power	450 W
Temperature	500 K
TTIP precursor flow	0.5 g/h

PA-SJD Supersonic Jet

Free gas isentropic expansion $R=(P_{pla}/P_{dep})>2$

- Mach number (v_{gas}/v_{sound}) >1
- Pressure, density and temperature decrease
- Particle velocities quickly reach v_{crit} (longitudinal velocity)

PA-SJD Supersonic Jet

Z^M Mach disk position

inside the Mach cone:

- Oriented jet ($v_{//} >> v_{\perp}$)
- Nanoparticles acceleration (energy to promote organized structures)
- Controlled nucleation (low collisionality to avoid aggregation)

D = nozzle diameter R = pressure ratio D = 6.9 mm 2 < R < 40 1 < M < 8 6.5 mm < Z_M < 29 mm v_{crit} =750 m/s for Argon

Quadrupole Mass Spectrometry Diagnostic

In situ, real time diagnostic

- Neutrals
- lons
- Radicals
- IEDF
- Movable along the jet centerline

Neutral gas profile

Isentropic expansion: $\frac{n(z)}{n_p} = \left(1.44 \left(\frac{z}{D}\right)^2 - 0.65 \left(\frac{z}{D}\right) + 0.87\right)^{-1/\gamma}$

Mach disk position:

$$z_{\rm M} = 0.67 \text{ D} \sqrt{\text{R}}$$

Neutral gas profile

Seeded jet

- TiO_x seeds follow isentropic expansion
- Drag forces and inertia determine the NP acceleration and deceleration (300 m/s -750 m/s)

Results confirm a supersonic jet acceleration of Titanium molecules diluted into the gas mixture

Seeded jet

We operate inside the Mach cone in the well oriented jet, where nanoparticles can be accelerated up to a speed of 750 m/s and their aggregation can be controlled and reduced (~10 nm particle size) do to the low collisionality

Film properties vs set-up parameters

•TiO_x particles, created in the plasma chamber, impact on a substrate yielding the growth of the thin film

The film morphology depends on:

- •Particle density in supersonic jet \rightarrow precursor flow rate (T)
- •Particles energy \rightarrow nozzle design and compression ratio (R)
- •Substrate position with respect to the Mach disk (z)
- •Substrate roughness

The film chemical composition depends on chemical reactions in the plasma chamber (Ar O_2 mixture, RF Power)

Film Chemical properties

RAMAN spectrum of synthesized TiO₂ film before (green) and after (red) annealing

Upon annealing Raman analysis shows the complete transformation in Anatase, with a **high purity** level of the TiO2 films (as indicated by the red peaks)

Film Deposition rates

Deposition rate is affected by multiple factors: Nozzle-Substrate position (z) Precursor flow rate (T=40-55 °C) Supersonic jet parameter (R)

Deposition rates

Deposition rate is affected by multiple factors:

Nozzle-Substrate position (z)
Precursor flow rate (T=40-55 °C)
Supersonic jet parameter (R)

•Typical deposition rates from tens nm/min to several hundreds nm/minute •It is possible to deposit films between ~50 nm to ~10 μ m thickness

Film porosity

Distance nozzle- substrate: 14 mm Low Precursor flow rate: 40 °C Thickness: 80 nm (16 %) Deposition rate: 8 nm/min Low Relative porosity:13% Distance nozzle- substrate: 9 mm High Precursor flow rate: 49 °C Thickness: 350 nm (12%) Deposition rate: 144 nm/min **High Relative porosity:35%**

Relative porosity evaluated as vacuum percentage respect to a T_iO_2 bulk by means of an ellipsometer

Film morphology SEM

Substrate after the shock

- Decreasing NP speed
- Losing directionality
- Collisions increase
- low deposition rates
- tree -like structures

Substrate inside the jet

- High speed NP
- Well oriented jet
- Low collision
- high deposition rates
- directional structures

200 nm

- shadowing effects
- self-similar structures

Hierarchical structure employed for solar cells

FE-SEM images of PA-SJD TiO₂ films

To the right: above a few tens of nanometres, tree-like structures are constrained to grow vertically due to mutual hindering.

To the left : higher magnification image showing the hierarchical structure from single nanometric grains (10 nm) to the tree-like mesoscale structure (100-500 nm)

Hierarchical structures: TEM analysis

(a) bright-field TEM image of a typical tree-like structure,HIERARCHICALLY ORGANIZEDSTRUCTURES

 (b) HRTEM image of a zig-zag structure, formed by 10 nm sized single-crystalline domains
(dashed box), ANATASE SINGLE
CRYSTAL STRUCTURES

Trifiletti et al., *Journal of Materials Chemistry*, 2013 Piferi et al., *Nanomaterials*, 2022

Photovoltaics Applications

Dye Sensitized Solar Cells (DSSC)

- Nanostructures
- High porosity
- Chemical purity

Good efficiency!

Leandri, Eur. J. Org. Chem. 2013

A novel inductively coupled plasma source for hierarchically nanostructured thin film deposition

Able to control nanostructure size porosity chemical purity

TiO₂ films tested for Photovoltaics Application

Dye Sensitized Solar Cells

TiO2 film	Dye adsorbed [10 ⁻⁸ mol/cm ²]	Jsc [mA/cm²]	Voc [mV]	FF [%]	PCE [%]
PA-SJD-0.8 μm	2.9	3.2	793	67	1.7
PA-SJD-1.2 µm	1.5	5.6	739	68	2.8
PA-SJD-1.6 µm	1.6	6.6	737	65	3.2
PA-SJD-2.2 µm	2.2	10.1	742	68	5.1
PA-SJD-3.6 µm	3.6	11.4	738	61	5.1
PA-SJD-4.7 μm	4.7	11.8	755	66	5.9
*Conventional-9 µm	9.0	13.0	749	69	6.7

*a conventional TiO₂ photoanode prepared via screen-printing from a commercial paste while keeping all of the other fabrication conditions unchanged

Trifiletti et al., Journal of Materials Chemistry, 2013

Dye Sensitized Solar Cells

Charge transport properties

- Efficiency PCE = $J_{sc} \times V_{oc} \times FF$ is proportional to the current density
- Current density strongly increases with thickness up to 2.2 μm then linear dependence is weaker

Dye Sensitized Solar Cells

Dye adsorption properties

- The dye adsorption increase with thickness is similar to the density current one suggesting a strong relationship between the two quantities.
- The amount of adsorption dye for thickness unit is higher than the conventional one Dye adsorption is related to the presence of the nanostructures.

Simulation results along the jet

Ion Energy Distribution in a ICP

Ion Energy is simply: $E = k_B T_e + q(V_{plasma} - V(z))$

10

First principle calculation model

Assumptions:

- Electrons do not influence IEDF
- Neutral density in each simulation cell is obtained from isentropic expansion equations
- Ions are accelerated by the potential gaps between V_{plasma} and V_{jet} then V_{jet} and 0

Ar⁺ ions collide with Ar neutrals losing their energy by elastic collisions

We can simulate Ar⁺ IEDF numerically evolving their dynamics from 5 to 20 mm and solving the equation of motion

Ar⁺ - Ar interactions are modelled with a 12-4 L-J potential (no charge exchange) $e\varphi(\mathbf{r}) = 4\epsilon \left(\frac{A}{r^{12}} - \frac{B}{r^4}\right)$

Measuring IEDF

We have collisions across the jet

We have two potential gaps, thus two peaks in our IEDF

Energy is evolving through collisions

12