Range Modulators for proton beams

F. Tommasino (most slides from R. Cristoforetti)

Case study: liver cancer

- Energy change requires times in the order of seconds
- Up to **30** energy layers per field...
- ... and more than one field
- Severely affected by target motion, so breath hold techniques need to be exploited

The use of Range Modulators (RMs) avoids the energy selection process

2D vs 3D Range Modulators

- Pins are all identical
- Dose distribution controlled only on the depth-dose profile
- Not useful for clinical applications

Simeonov et al. Monte Carlo simulations and dose measurements of 2-D range modulators for scanned particle beams.

2D vs 3D Range Modulators

Simeonov et al. MC simulations and dose measurements of a patient-specific 3D range modulator for proton therapy.

- All pins need to be different in order to exploit all available degrees of freedom
- Objective dose distribution is conformal to arbitrary shape
- Scattering becomes relevant
- Increased level of complexity

Numerical description

• D_{SOBP} = SOBP profile

D

 N_s

W

•

٠

٠

٠

- = Single BP
 - = Number of BPs
 - = fluence weights
- N_z = Number of sampled depths

Workflow For 2DRMs

REALIZATION AND EXPERIMENTAL VALIDATION

First prototypes: PA12 Range Modulators

Stereo Microscope (Visual Inspection)

Industrial Tomograph (Quantitative estimation)

- Porosity
- Irregularities
- Systematic deviations

Solution: change material and printing technique

Stereolitography with three different resins:

- Vitra
- DWS
- Vero Yellow

Results

Gantry

Research Area

3D Range Modulators

Y. Simeoneov et al, 3D range-modulator for scanned particle therapy: development, Monte Carlo simulatons and experimental validation

- All pins need to be optimized
- Increased number of degrees of freedom required
- Need to control beam scattering and optical divergence
- Up to several thousands of optimization variables
- Linear combination of full dose distributions instead of single depth dose profiles

Workflow For 3DRM

3D Range Modulators: spherical target in water

1. Target definition and RS plan

Export DICOM RP, RD, RS

Switch to Matlab/matRad

2. RM "macroscopic" geometry definition

At this stage, we get how many pins we need and "where"

3D Range Modulators

3. Pre-computed Dose Influence Matrix

 $D[i] = \sum_{j=1}^{N_s} d[i][j]w[j]$ *i*-> voxel

j –> spot

6. Fluence map optimization

5. Monte Carlo (TOPAS) recalculation of D(i)

Optimization to get weights

4. Weights converted into pin geometry and sent to printer

Simulation

Simulation

First prototype

Outlook

- Further **testing** of the 3DRM prototype (on the short term)
- Best setup for 3D RM implementation?
- Improvement of the 3DRM optimization procedure
- Evaluation of dose rate distributions
- Implementation of DMF and SDDRO