High-Intensity Kaon Experiments at the CERN SPS

Matthew Moulson INFN Frascati

For the HIKE Collaboration

Workshop on status and perspectives of physics at high intensity Laboratori Nazionali di Frascati, 11 November 2022

Rare kaon decays

2

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR $\times 10^{11}$	Exp. BR × 10 ¹¹ (Sep 2019)
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	< 28†
$K_L o \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	< 38†
$K^+ \rightarrow \pi^+ v \overline{v}$	90%	4%	8.6 ± 0.4	< 18.5 [†]
$K_L o \pi^0 v \overline{v}$	>99%	2%	2.9 ± 0.2	< 300 ⁺

*Approx. error on LD-subtracted rate excluding parametric contributions [†]90% CL

$K \rightarrow \pi v \bar{v}$ in the Standard Model

Extremely rare decays with rates very precisely predicted in SM:

- Hard GIM mechanism + pattern of CKM suppression $(V_{ts}^*V_{td})$
- No long-distance contributions from amplitudes with intermediate photons
- Hadronic matrix element obtained from $BR(K_{e3})$ via isospin rotation

	SM predicted rates Buras et al, JHEP 1511*	Experimental status (before Sep 2019)
$K^+ \rightarrow \pi^+ v \overline{v}$	BR = (8.4 ± 1.0) × 10 ⁻¹¹	BR = (17.3 $^{+11.5}_{-10.5}$) × 10 ⁻¹¹ Stopped K^+ , 7 events observed BNL 787/949, PRD79 (2009)
$K_L ightarrow \pi^0 v \overline{v}$	BR = (3.4 ± 0.6) × 10 ⁻¹¹	BR < 300 × 10⁻¹¹ 90%CL KOTO, PRL122 (2019)

* Tree-level determinations of CKM matrix elements

High-intensity kaon experiments at the CERN SPS – M. Moulson – Physics at high intensity – Frascati, 11 November 2022

$K \rightarrow \pi v \bar{v}$ and new physics

New physics affects K^+ and K_L BRs differently Measurements of both can discriminate among NP scenarios

- Models with CKM-like flavor structure
 - -Models with MFV
- Models with new flavor-violating interactions in which either LH or RH couplings dominate
 - -*Z*/*Z*′ models with pure LH/RH couplings
 - -Littlest Higgs with T parity
- Models without above constraints

-Randall-Sundrum

• Grossman-Nir bound

Model-independent relation

 $\frac{\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu})}{\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})} \times \frac{\tau_+}{\tau_L} \le 1$

BR($K_L \rightarrow \pi^0 \ell^+ \ell^-$) constrains height of UT like $K_L \rightarrow \pi^0 v v$

- Somewhat larger theoretical uncertainties
 from long-distance physics
 - SD CPV amplitude: γ/Z exchange
 - LD CPC amplitude from 2y exchange
 - LD indirect CPV amplitude: $K_L \rightarrow K_S$
- $K_L \rightarrow \pi^0 \ell^+ \ell^-$ can be used to explore helicity suppression in FCNC decays

 $\mathsf{BR}(K_L \to \mu^+ \mu^-) \to A_L^{SD} \propto (1 - \rho)$

- SM prediction depends on sign of $A(K_L \rightarrow \gamma \gamma)$, which determines LD/SD interference
- BR_{exp}($K_L \rightarrow \mu^+ \mu^-$) = (6.84 ± 0.11) × 10⁻⁹ See e.g. BNL E871 result, PRL84 (2000)

Further theoretical progress expected, including on lattice

$$BR_{SM}(K_L \to \pi^0 e^+ e^-) = 3.54^{+0.98}_{-0.85} \times 10^{-11} \text{ (constr.)}$$
$$= 1.56^{+0.62}_{-0.49} \times 10^{-11} \text{ (destr.)}$$

$$BR_{SM}(K_L \to \pi^0 \mu^+ \mu^-) = 1.41^{+0.28}_{-0.26} \times 10^{-11} \text{ (constr.)}$$
$$= 0.95^{+0.22}_{-0.21} \times 10^{-11} \text{ (destr.)}$$

$$BR_{SM}(K_L \to \mu^+ \mu^-) = 6.82^{+0.77}_{-0.24} \times 10^{-9} \text{ (LD+)}$$
$$= 8.04^{+1.66}_{-0.97} \times 10^{-9} \text{ (LD-)}$$

$K^+ \rightarrow \pi^+ \ell^+ \ell^-$ and lepton universality

LD dominated, mediated by $K^+ \rightarrow \pi^+ \gamma^*$

Vector form factor:

$$V_{+}(z) = a_{+} + b_{+}z + V_{+}^{\pi\pi}(z)$$

 $z = m_{\ell\ell}^{2}/m_{K}^{2}$ \uparrow
 $K_{3\pi}$ loop term

LD effects in a_+ , b_+ purely universal LD contribution to difference cancels out: sensitive only to short-distance effects

$$a^{\mu\mu}_{+} - a^{ee}_{+} = -\sqrt{2} \operatorname{Re}\left[V_{td}V^*_{ts}(C^{\mu}_9 - C^e_9)\right]$$

Lepton universality predicts same a_+ , b_+ for $\ell = e, \mu$ Closest analogue to R_K in *B* physics

$$\begin{aligned} \mathcal{A}_{\text{eff}} &= -\frac{1}{\sqrt{2}} \mathcal{X}_t \quad \frac{1}{4\pi} \sum_k C_k O_k \\ O_9^{\ell} &= (\bar{s}\gamma_{\mu} P_L d) \left(\bar{\ell} \gamma^{\mu} \ell \right) \\ O_{10}^{\ell} &= (\bar{s}\gamma_{\mu} P_L d) \left(\bar{\ell} \gamma^{\mu} \gamma_5 \ell \right) \\ O_L^{\ell} &= (\bar{s}\gamma_{\mu} P_L d) \left(\bar{\nu}_{\ell} \gamma^{\mu} (1 - \gamma_5) \nu_{\ell} \right) \end{aligned}$$

 $C_k^\ell = C_{k,{\rm SM}}^\ell + \delta C_k^\ell$

Global fit to kaon observables

Deviation of Wilson coefficients from SM, for NP scenarios with LH quark currents

arXiv:2206:14748

Current data:

- $K^+ \rightarrow \pi^+ \nu \nu$
- $K_L \rightarrow \mu \mu$ (LD+)
- $K^+ \rightarrow \pi^+ \ell \ell$
- $K_L \rightarrow \pi^0 ee$ (CL90)

Fit to current data

Projection A:

- $K^+ \rightarrow \pi^+ \nu \nu, K_L \rightarrow \mu \mu,$ $K^+ \rightarrow \pi^+ \ell \ell$ mmts confirmed at target precision
- $K_L \rightarrow \pi^0 ee$ assume SM value ± 100% unc

Projection B:

 All mmts give best fit values with target precision

The role of HIKE

8

Studies of the kaon sector are complementary to studies of the *B* and *D* sectors Kaons provide different (in some cases higher) NP sensitivity than *B*, *D* mesons

NP scenarios	Process		
Z-FCNC	$K^+ ightarrow \pi^+ u ar u, K_L ightarrow \pi^0 u ar u, arepsilon'/arepsilon$		
Ζ′	$K^+ o \pi^+ u ar u, K_L o \pi^0 u ar u, arepsilon' / arepsilon, \Delta M_K$		
Simplified models	$K_L ightarrow \pi^0 u ar u, ar arphi'/ ar arepsilon$		
LHT	All K decays		
331 models	Small effects in $K \rightarrow \pi v \bar{v}$		
Vector-like quarks	$K^+ o \pi^+ u ar u, K_L o \pi^0 u ar u, \Delta M_K$		
Supersymmetry	$K^+ o \pi^+ u ar u, K_L o \pi^0 u ar u$		
2HDM	$K^+ o \pi^+ u ar u, K_L o \pi^0 u ar u$		
Universal extra dimensions	$K^+ o \pi^+ u ar u, K_L o \pi^0 u ar u$		
Randall-Sundrum models	All rare K decays		
Leptoquarks	All rare K decays		
SMEFT	Several processes in K system		
SU(8)	$K^+ o \pi^+ u ar u, K_L o \pi^0 u ar u$		
Diquarks	$K^+ o \pi^+ u ar u, K_L o \pi^0 u ar u, arepsilon_K$		
Vector-like compositeness	$K^+ o \pi^+ u ar u, K_L o \pi^0 u ar u, arepsilon_K$		

arXiv:2203.09524

Many NP models predict effects on kaon observables

Main limitation to constraining these models is from experimental precision of kaon measurements

HIKE will:

- Improve the precision of these measurements to match and challenge theory predictions
- Study and measure for the first time channels not yet observed
- Search for kaon decays forbidden by the SM with unprecedented sensitivity

The NA62 experiment at the CERN SPS

$K^+ \rightarrow \pi^+ v \bar{v}$ with decay in flight

 $\pi\pi^0$

90

80

100

Signal regions

10⁴

10³

10²

10

Signal:

$BR = (8.6 \pm 0.4) \times 10^{-11}$

- K track in
- π track out
- No other particles in final state
- $M^2_{\text{miss}} = (p_K p_\pi)^2$

Main *K*⁺ backgrounds:

$K^+ \rightarrow \mu^+ \nu(\gamma)$	BR = 63.5%
$K^{\!+}\! ightarrow\pi^{\!+}\pi^0(\gamma)$	BR = 20.7%

High-rate, precision tracking: 750 MHz at GTK

- Redundant PID and muon vetoes
- Hermetic photon vetoes
- High-performance
 EM calorimeter

10

20

m²_{miss} [GeV²]

0.1

J.05

0

-0.05

-0.1<u>–</u>

R2

NA62 through 2025

Summary of NA62 Run 1 (2016-2018):

- Expected signal (SM): 10 events
- Expected background: 7 events
- Total observed: 20 events
- 3.4σ signal significance
- Most precise measurement to date

NA 6

 $\mathsf{BR}(K^+ \to \pi^+ vv) = (10.6 \, {}^{+4.0}_{-3.4 \, \text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$

Plans for NA62 Run 2 (from LS2 to LS3):

NA62 resumed data taking in July 2021

Key modifications to reduce background from upstream decays and interactions:

- Rearrangement of beamline elements around GTK achromat
- Add 4th station to GTK beam tracker
- New veto hodoscope upstream of decay volume and additional veto counters around downstream beam pipe

Run at higher beam intensity $(70\% \rightarrow 100\%)$

Expect to measure BR($K^+ \rightarrow \pi^+ vv$) to ~10% by LS3 (end 2025)

11

Fixed target runs at the SPS

Fixed target runs foreseen through 2040 There is an opportunity at the SPS for an **integrated program** to pin down new physics in kaon decays

Measurement of all rare kaon decay modes charged and neutral—to give clear insight into the flavor structure of new physics

The HIKE program

Phase 1: High-intensity K^+ experiment to measure BR($K^+ \rightarrow \pi^+ vv$) to ~5%

• Also study lepton universality/number/flavor violation:

 $R_K = \Gamma(K \to ev) / \Gamma(K \to \mu v), \ K^+ \to \pi^+ \ell \ell, \ K^+ \to \pi^- \ell^+ \ell^+, \ K^+ \to \pi^+ \mu e$

• Radiative and Dalitz decays, chiral parameters, precision measurements

Phase 2: Experiment for rare K_L decays with charged particles

- K_L beamline, as in KLEVER
- Tracking and PID for secondary particles, as in NA62
- $K_L \rightarrow \pi^0 \ell^+ \ell^-$

Excellent π^0 mass resolution – look for signal peak over Greenlee background

- Lepton universality/number/flavor violation in K_L decays
- Radiative K_L decays and precision measurements
- Measurement of K_L , n, and Λ fluxes and halo to prepare for K_L phase

During 1&2: Periodic runs with dumped beam, collect up to 5×10^{19} pot Phase 3: Measurement of BR($K_L \rightarrow \pi^0 vv$) to ~20%: KLEVER

Phase 1: $K^+ \rightarrow \pi^+ \nu \nu$ at high-statistics

Goal: Measure BR($K^+ \rightarrow \pi^+ vv$) to within ~5%

Requires 4x increase in intensity \rightarrow requires major beam upgrades!

Basic design of NA62 will work at high intensity

Key challenges:

1.2 × 10¹³ ppp = 4x NA62

- Require 4x better time resolution to keep random veto rate under control
- Must maintain other key performance specifications at high-rate: Space-time reconstruction, material budget, single photon efficiencies, etc.

These characteristics are necessary for rare K_L decays as well

• Calorimeter, photon vetoes, and readout reused for K_L experiments

Experimental challenges: GTK

At 4x intensity GTK will track 3 GHz!

- Time resolution < 50 ps per plane, no non-gaussian tails!
- Smaller pixels to reduce occupancy: < 300 × 300 μm²
- Efficiency: > 99% (incl. fill factor)
- Reduced material budget: 0.3-0.5% X₀
- Beam intensity: 3 GHz over ~ 3x6 cm²
- Maximum local intensity: 8 MHz/mm²
- Radiation resistance: 2.3x10¹⁵ *n* eq/cm²/yr

NA62 Gigatracker station

- Continue to improve planar sensors while monitoring progress on new technologies
- Possible synergies with ongoing development efforts:

High-intensity kaon experiments at the CERN SPS - M. Moulson - Physics at high intensity - Frascati, 11 November 2022

Experimental challenges: STRAW

For 4x intensity:

- Increase rate capability
 Reduce straw diameter
 Use fast shaping
- Further improve momentum resolution

Reduce material budget Improve position resolution

diameter ng e momentum

Design studies in progress at CERN and Dubna

- Straw diameter $9.8 \rightarrow 5 \text{ mm}$
- Trailing-time resolution: $30 \rightarrow 6$ ns
- Maximum drift time: $150 \rightarrow 80$ ns
- Rate capability increased 6-8x
- Layout: 4 chambers, ~21000 straws
- Decreased straw wall thickness: $36 \rightarrow 20 \ \mu m$
- Material budget: $1.7 \rightarrow 1.4\% X_0$

16

NA48 LKr calorimeter in HIKE

Quasi-homogeneous ionization calorimeter: 27X₀ of LKr

Photon efficiency likely adequate even for K_L program

- NA48-era studies for NA62: $1 \varepsilon < 10^{-5}$ for $E_{\gamma} > 10$ GeV
- High-energy efficiency confirmed with NA62 data

Time resolution

- $\sigma_t \sim 500 \text{ ps for } \pi^0 \text{ with } E_{\gamma\gamma} > 20 \text{ GeV}$
- Would require 4x improvement in *K*⁺ phase to hold accidental veto rate to current levels
- Critical for KLEVER: Accidental rate ~140 MHz!
- **Consolidation work necessary**

Investigating upgrade possibilities

- Increase operating voltage to increase drift velocity
- · Faster digitizers and signal shaping

For *K_L* phase, LKr inner bore limits beam solid angle

• Cold bore r = 80 mm, inner sensitive radius r = 120 mm

LKr resolution:

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\%$$
$$\sigma_t = \frac{2.5 \text{ ns}}{\sqrt{E}}$$

Shashlyk calorimeter with spy tiles

Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino

0.275 mm Pb + 1.5 mm scintillator

PANDA/KOPIO prototypes:

- *σ_E*/√*E* ~ 3% /√*E* (GeV)
- $\sigma_t \sim 72 \text{ ps} / \sqrt{E} \text{ (GeV)}$
- $\sigma_x \sim 13 \text{ mm} / \sqrt{E} \text{ (GeV)}$

New for KLEVER: Longitudinal shower information from spy tiles

- PID information: identification of μ , π , *n* interactions
- Shower depth information: improved time resolution for EM showers

1st prototype assembled in Protvino and tested at OKA in April 2018 and DESY in Nov 2019

Innovative scintillators for shashlyk

R&D in synergy with NanoCal project

Realize first calorimeter with NC scintillators: CsPbBr₃, 0.05% w/w in UV-cured PMMA

- Light yield O(few k) photons/MeV deposit
- 50% of light emitted in components with $\tau < 0.5$ ns
- Radiation hard to O(1 MGy)

Progress:

- 2022: Component test at CERN this fall (fibers/tiles/SiPMs)
- 2023-2024: Build and compare full-scale prototypes with conventional/NC scintillator

Quantum dots used as emitters for bright, ultrafast, robust scintillators:

- Excellent candidate for HIKE shashlyk!
- Applications to timing planes

Trial production of tiles in Protvino format (55 x 55 mm²)

Phase 2: Rare *K*_L decays

20

K_L beamline, tracking and PID for secondary particles

Physics objectives:

- $K_L \rightarrow \pi^0 \ell^+ \ell^-$, $K_L \rightarrow \mu^+ \mu^-$: Overconstrain UT with information on $s \rightarrow d\ell \ell$
- Lepton-flavor violation in *K*_L decays
- Radiative *K*_L decays and precision measurements
- K_L decays to exotic particles

Will provide valuable information to characterize neutral beam

- Example: Measurement of K_L , n, and Λ fluxes and halo
- Experience from KOTO and studies for KLEVER show this to be critical!

Neutral beam and beamline

HIKE

- 400 GeV p on
 400 mm Be target
- Production angle $\theta = 2.4 8.0$ mrad
- Solid angle $\Delta \theta = 0.4 \text{ mrad}$
- **4 collimation stages** minimize neutron halo, including beam scattered from absorber
- Photon absorber in dump collimator: Optimize thickness using aligned metal crystal

Phase 2 physics sensitivity

22

- Nearly 2 × 10¹⁴ kaon decays in FV in 5 years!
- Single-event sensitivities for $K_L \rightarrow \pi^0 \ell^+ \ell^-$ improved by more than two orders of magnitude
- Suppression of the $K_L \rightarrow \gamma \gamma \ell^+ \ell^$ background relies on excellent photon energy resolution of the HIKE EM calorimeter

Experimental status (KTeV): BR($K_L \rightarrow \pi^0 e^+ e^-$) < 28 × 10⁻¹¹ BR($K_L \rightarrow \pi^0 \mu^+ \mu^-$) < 38 × 10⁻¹¹

$$K_{L} \rightarrow \gamma \gamma \ell + \ell -$$

BR($\gamma \gamma e^{+}e^{-}$) ~ 6 × 10⁻⁷
BR($\gamma \gamma \mu^{+}\mu^{-}$) ~ 10⁻⁸
Greenlee
PRD42 (1990)

Mode	Assumed branching ratio	Acceptance	Signal yield in five years
$K_L \rightarrow \pi^0 e^+ e^-$	3.5×10^{-11}	2.1%	140
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	1.4×10^{-11}	6.0%	160
$K_L \rightarrow \mu^+ \mu^-$	7×10^{-9}	17%	2.3×10^{5}
$K_L \to \mu^{\pm} e^{\mp}$	_	16%	-

- Likely first observation of $K_L \rightarrow \pi^0 \ell^+ \ell^-$ or sensitivity to BRs O(10⁻¹¹)
- $K_L \rightarrow \mu^+ \mu^-$ signal yield: BR with 0.2% statistical precision
- Sensitivities of O(10⁻¹²) for BR of a broad range of rare and forbidden K_L decays (e.g. 60x better than BNL-E871)

Phase 3: $K_L \rightarrow \pi^0 v \bar{v}$:

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have $\ge 2 \text{ extra } \gamma \text{s or } \ge 2 \text{ tracks to veto}$ Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_\perp = 0$

K_L momentum generally is not known $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint

Generally used to reconstruct vertex position

Main backgrounds:

veto R_1 R_2 R_2 R

$$R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$$

Mode	BR	Methods to suppress/reject	
$K_L \rightarrow \pi^0 \pi^0$	8.64 × 10 ⁻⁴	γ vetoes, π^0 vertex, p_\perp	
$K_L \rightarrow \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp	
$K_L \rightarrow \pi e v(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes	
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}	
$n + A \rightarrow X \pi^0$		High vacuum decay region	

A $K_L \rightarrow \pi^0 v \bar{v}$ experiment at the SPS

K_L**EVER** target sensitivity: 5 years: 6×10^{19} pot ~60 SM $K_L \rightarrow \pi^0 vv$ $S/B \sim 1$ δ BR/BR($\pi^0 vv$) ~ 20%

Studied in context of Physics Beyond Colliders

- High-energy experiment: Complementary to KOTO
- Photons from *K_L* decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as for other HIKE phases

Long beamline to suppress $\Lambda \rightarrow n\pi^0$

Need to extend beamline 150 m (120 m \rightarrow 270 m from target to UV/AFC) Downstream extension of ECN3 hall

KLEVER installed in ECN3 extension

Small-angle photon veto

Small-angle photon calorimeter system (SAC)

- Rejects high-energy γ s from $K_L \rightarrow \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 430 MHz of beam neutrons
- $\sigma_t < 100 \text{ ps}$, 2-pulse separation at ~ 1 ns
- Radiation hard to 10¹³-10¹⁴ n/cm² and 10⁵-10⁶ Gy

Efficiency requirements

Beam comp.	Rate (MHz)	Req. 1 – ε	
γ, <i>E</i> > 5 GeV	50	10 ⁻²	
γ, E > 30 GeV	2.5	10 ⁻⁴	
n	430	-	

Small-angle photon veto

Proposed solution: Ultra-fast, high-*Z* crystal calorimeter

- Cerenkov radiator like PbF₂ or ultra-fast scintillator such as PWO-UF
- Transverse and longitudinal segmentation for *y*/*n* discrimination
- Exploit coherent interactions in crystals to reduce thickness

PWO-UF (ultra-fast):

Dominant emission with $\tau < 0.7$ ns M. Korzhik et al., NIMA 1034 (2022) 166781

Summary of HIKE physics program

Observable	Target	Motivation
K ⁺ phase		
$K^+ \rightarrow \pi^+ \nu \nu$	BR to ~5%	New physics in FCNC decays
$K^{+} \rightarrow \pi^{+} \ell \ell$	Form factors at ~1% level	LFUV
$K^+ \rightarrow \pi \mu e, \pi^- \ell^+ \ell^+$	O(10 ⁻¹²) sensitivity	LFV, LNV
$R_K = \Gamma(K \to ev) / \Gamma(K \to \mu v)$	<i>R_K</i> to ~0.1%	LFUV
$K^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$, $\pi^{\scriptscriptstyle +} \pi^0 \gamma$, $\pi^{\scriptscriptstyle +} \pi^0 e e$	As best as possible	Chiral parameters (LECs)
Hybrid phase		
$K_L \rightarrow \pi^0 \ell \ell$	Observation	New physics in FCNC decays
$K_L \rightarrow \mu \mu$	BR to < 1%	New physics in FCNC decays
$K_L \rightarrow \mu e, \pi^0 \mu e$	O(10 ⁻¹²) sensitivity	LFV
$K_L \rightarrow \gamma \gamma, \ \pi^0 \gamma \gamma$	As best at possible	Ancillary to $K_L \rightarrow \mu \mu$, LECs
K _L phase (K _L EVER)		
$K_L \rightarrow \pi^0 \nu \nu$	BR to ~20%	New physics in FCNC decays

Plus periodic runs with dumped beam to accumulate at least 10¹⁹ pot to search for exotic, long-lived particles

Exotic, long-lived particles in HIKE

Searches for visible decays in beam-dump mode

- Low rate in detector allows for potentially much higher beam intensity
- 10x statistics of 2021-2025 data (at least 10¹⁹ pot)
- Sensitive to forward processes, complimentary to off-axis experiments
 E.g., SHADOWS, an off-axis experiment proposed to run concurrently in ECN3

Searches for invisible decays during kaon running: $K \rightarrow \pi X$

• Projected sensitivities to scalars and ALPs for HIKE K^+ and K_L programs

High-intensity kaon experiments at the CERN SPS – M. Moulson – Physics at high intensity – Frascati, 11 November 2022

Summary and outlook

$K \rightarrow \pi v v$ and other rare kaon decays are uniquely sensitive indirect probes for new physics at high mass scales

Need precision measurements of both rare K^+ and K_L decays!

NA62 will improve on current knowledge of BR($K^+ \rightarrow \pi^+ \nu \nu$) in short term, ultimately reaching O(10%) precision

Next generation rare kaon experiments with high-intensity beams and cutting-edge detectors will provide a powerful tool to search for physics beyond the Standard Model

HIKE—an **integrated program** of K^+ and K_L experiments—is taking shape at the CERN SPS

Letter of Intent SPSC-I-257 7 November 2022

Additional information

Workshop on status and perspectives of physics at high intensity Laboratori Nazionali di Frascati, 11 November 2022

High-intensity beams at the SPS

Operational scenarios and limits on the intensity deliverable to the North Area targets were studied in context of the BDF proposal as part of Physics Beyond Colliders

• $K^+ \rightarrow \pi^+ \nu \nu$ 6 × 10¹⁸ pot/year 4x increase

would require:

• $K_I \rightarrow \pi^0 v v$ 1 × 10¹⁹ pot/year **6x increase**

increases with respect to present primary intensity

A kaon experiment at 6x present intensity is compatible with a diverse North Area program

High-intensity kaon experiments at the CERN SPS – M. Moulson – Physics at high intensity – Frascati, 11 November 2022

High-intensity proton beam in ECN3

Conclusions from PBC Conventional Beams working group

Issue	Approach	
Extraction losses	Good results on ZS losses and spill quality from SPS Losses & Activation WG (SLAWG) workshop, 9-11 November 2017: https://indico.cern.ch/event/639766/	
Beam loss on T4	Vertical by-pass to increase T4 \rightarrow T10 transmission to 80%	
Equipment protection	Interlock to stop SPS extraction during P0Survey reaction time	
Ventilation in ECN3	Preliminary measurements indicate good air containment Comprehensive ventilation system upgrade not needed	
ECN3 beam dump	Significantly improved for NA62 Need to better understand current safety margin	
T10 target & collimator	Thermal load on T10 too high \rightarrow Use CNGS-like target? Dump collimator will require modification/additional cooling	
Radiation dose at surface above ECN3	8 mrad vertical targeting angle should help to mitigate Preliminary results from FLUKA simulations Proposed target shielding scheme appears to be adequate Mixed mitigation strategy may be needed for forward muons	

Beam and target simulations

CNGS rod target

Thermal simulations of target and TAX dump collimator

- Identified upgrades needed for highintensity beam
- Target: CNGS-like design: carbon-carbon supports, pressurized air cooling
- TAX: Cooling elements nearer to center of collimator, like for SPS beam dump

Dose rate simulation in ECN3, K_L beam Neutral beam and prompt surface dose

10000

- Neutrons: Shielding adequate to reduce surface dose; need access shaft airlock
- **Muons:** Additional shielding at target and/or at downstream end of ECN3

Experimental challenges: KTAG

HIKE

KTAG for 4x intensity:

- Tag 200 MHz of K⁺ in 3 GHz beam
- Need 4x better time resolution: ~20 ps!
- Max detected photon rate: ~8 MHz/cm²
- Single-photon capability with $\sigma_t = 50-70$ ps
- Good radiation resistance
- Same vessel, new photodetectors

Microchannel plate (MCP) PMTs

- Excellent time resolution (~20 ps)
- Low dark noise
- Single-photon sensitivity
- High gain, good QE
- Good filling factor
- Input rate capability ~MHz/cm²
- Susceptible to aging: QE drops due to to ion feedback to photocathode Effect of aging must be investigated and/or mitigated

Experimental challenges: GTK

Optimized for timing measurements

Add thin doped layer to conventional silicon detector to produce low, controlled multiplication

 $\sigma_t = \sigma_{\text{jitter}} \oplus \sigma_{\text{time walk}} \oplus \sigma_{\text{TDC}} \oplus \sigma_{\text{field}} \oplus \sigma_{\text{straggling}}$

minimized by optimized readout electronics and correction techniques

- Excellent time resolution: 30-35 ps
- Thin sensors ~ 50 μm \rightarrow reduced contribution to material budget
- Optimized gain layer design enhances reliability and radiation hardness
 No significant performance degradation up to 1.5 × 10¹⁵ n eq/cm²
- New technologies to reduce impact of structures between readout pads (no-gain areas for signal)

Experimental challenges: GTK

TimeSPOT

Trench geometry improves charge collection time uniformity

- Spatial resolution: O(10µm)
- Time resolution: ~30-50 ps/pixel seen in preliminary tests
- Radiation hardness > $10^{16} n_{eq}/cm^2$
- Data throughput > 1 TB/s

cons:

- Unmatched radiation hardness
 - Effect of Landau fluctuations mitigated by geometry
 - Extremely fast signals
- **Possible** Complexity of fabrication
 - Geometric inefficiency (blind electrodes)
 - Shape of time distribution (tail)?

- Use of 3D sensors for vertex detectors demonstrated ATLAS IBL Pixel Detector Upgrade NIMA694 2012
- Potential for timing not yet explored

See also: <u>A.Cardini</u> <u>Detector Seminar</u> <u>19 Jun 2020</u>

Neutral beam simulation

FLUKA simulation of beamline

32-mm tungsten converter $(9X_0)$ Detail of target and dump collimator:

Vetoes for upstream $K_L \rightarrow \pi^0 \pi^0$

39

Upstream veto (UV):

- 10 cm < *r* < 1 m:
- Shashlyk calorimeter modules à la PANDA/KOPIO, like MEC

Active final collimator:

- 4.2 < *r* < 10 cm
- LYSO collar counter
- 80 cm long
- Internal collimating surfaces
- Intercepts halo particles from scattering on upstream collimators or γ absorber Rejects π^0 s from inelastic interactions
- Rejects $K_L \rightarrow \pi^0 \pi^0$ in transit through collimator

Active final collimator

- Intercepts halo particles from scattering on upstream collimators or γ absorber Rejects π⁰s from inelastic interactions
- Rejects $K_L \rightarrow \pi^0 \pi^0$ in transit through collimator

Design in progress:

- 60 mm < *r* < 100 mm
- 80 cm long (3-4 consecutive rings)
- 20-24 crystals per ring

LYSO collar counter with internal collimating surfaces

 Fast (40 ns), bright (~ Nal), radiation hard (>10⁶ Gy)

Crystals read out on back side with APDs

- Good coupling with LYSO and high quantum efficiency
- Simple signal and HV management
- E.g. RMD S1315 (13x13 mm²)

Expected light yield > 4000 p.e./MeV

Large-angle photon vetoes

25 new LAV detectors providing hermetic coverage out to 100 mrad Need good detection efficiency at low energy $(1 - \varepsilon \sim 0.5\% \text{ at } 20 \text{ MeV})$

Baseline technology: CKM VVS Scintillating tile with WLS readout

Good efficiency assumptions based on E949 and CKM VVS experience

E949 barrel veto efficiencies Same construction as CKM

Tests for NA62 at Frascati BTF

Large-angle vetoes

Time resolution for current LAVs ~ 1 ns

- Cerenkov light is directional
- Complicated paths to PMT with multiple reflections

CKM Vacuum Veto System (VVS)

- Pb/scintillating tile
- WLS fiber readout

Light read out with PMTs in original design

Y ~ 20 p.e./MeV cf NA62 ~ 0.3 p.e./MeV

Modify design to use SiPM arrays

42

Simulation of γ/n separation

Energy fraction in spy group = energy deposited in spy tiles/deposited in shashlyk

High-intensity kaon experiments at the CERN SPS – M. Moulson – Physics at high intensity – Frascati, 11 November 2022

43

Coherent effects in crystals

Coherent effects increase cross-section for electromagnetic shower processes (bremsstrahlung, pair production)

- Decrease effective value of X₀
- Exploit coherent effects for calorimetry?

Coherent superposition of Coulomb fields Electric field ε approx. const. ~ 10¹⁰-10¹² V/cm Effective field $\varepsilon' = \gamma_{eff}$ ($\gamma_{eff} = E/m_ec$)

For $\varepsilon' \sim \varepsilon_0 = 2\pi m^2 c^3 leh$ virtual pairs disassociate

- Early initiation of EM showers
- Minimize fluctuations of deposited energy vs depth

Pair production enhanced by coherent effects at small θ_{y} and high E_{y}

High-intensity kaon experiments at the CERN SPS – M. Moulson – Physics at high intensity – Frascati, 11 November 2022

Charged particle veto

10

45

200

 $z_{\rm true}$ [**m**]

- $K_L \rightarrow \pi ev$ can emulate signal when both π and e deposit energy in MEC
- Fake π⁰ vertexes from πe all reconstructed downstream of true decay
 - $-\pi^+$ deposits only a fraction of its energy
- *K*_{e3} decays with "π⁰" reconstructed in FV have z_{rec} < 200 m
 - All within the acceptance of the CPV

Baseline CPV design

Square scintillator tiles, 5-mm thick, supported on carbon fiber membrane

155 m

• 2 planes \rightarrow 3% X_0

Tile geometry: 4x4 cm² or 8x8 cm²

Ξ

- Smaller tiles near beam line
- Cracks staggered between planes
- 4 chamfered corners (45°) for direct SiPM coupling

Charged particle rejection

 $K_L \rightarrow \pi ev$ can emulate signal when both π and e deposit energy in LKr

Use cluster RMS in LKr to identify and reject π interactions

• Geant4 confirmed by preliminary analysis of $\pi\pi^0$ events in NA62 data: $\varepsilon_{\gamma} = 0.95$ $\varepsilon_{\pi} = 0.05$

If LKr replaced by shashlyk, longitudinal shower profile information also available

Ratio of hadronic/total energy effective to identify π showers

• Preliminary results based on Geant4:

$$\varepsilon_{\gamma} = 0.99$$

 $\varepsilon_{\pi} = 0.07$

- Study of HAC (MUV1/2) response in NA62 data in progress
 - Parameterization of response for inclusion in fast simulation

Trigger and veto rate simulations

Detector rates estimated with full FLUKA 120-m beamline simulation and idealized detector geometry

Event class	Rate [MHz]	_	Detector	Hit rate [MHz]
Trigger rates			AFC	2.3
Exactly 2 hits on MEC	4.8		UV	7.1
Exactly 2 γ on MEC	1.0		LAV	14
Exactly 2 hits on MEC,	3.1		MEC	18
no hits on UV or LAVs			IRC	22
Exactly 2γ on MEC, nothing else	0.007	-	SAC	95
Accidental rates			Simultan	eous detector rates
Single hit	104		LAV —	
Multi hit	30			
			MEC -	

High-intensity kaon experiments at the CERN SPS – M. Moulson – Physics at high intensity – Frascati, 11 November 2022

LYSO

Limits on $K_L \rightarrow \pi^0 X$ from $K_L \rightarrow \pi^0 v \bar{v}$

High-intensity kaon experiments at the CERN SPS – M. Moulson – Physics at high intensity – Frascati, 11 November 2022