LHC and flavor experiments at the intensity frontier

Diego Redigolo **INFN** Florence

TRIGGERING

Finite band width make experiments theory biased

We will loose important data if we do not ASK to look for it

TRIGGERING

Finite band width make experiments theory biased

We will loose important data if we do not ASK to look for it

LHC Trigger basics

40 MHz

Only 0.0025 % of all collisions get recorded ➡ Triggers are critical to the experimental programs at ATLAS, CMS and LHCb!

Currently only tracking at HLT step

100 kHz

1 kHz

LHC at the intensity frontier

LHC at the intensity frontier

Complementary sensitivity for signals with

- Low rates
- Relatively low backgrounds (online + offline)

Things to do with the phase II upgrade

Experimental physics

Two examples:

Theoretical physics

Things to do with the phase II upgrade

Experimental physics

Two examples:

Theoretical physics

577 -4d	-f3 dd-	3ee -a5	aa 77	38 - f	d7 3e	c9 ea	a
_pa _pa _pa _pa _pa _pa _pa _pa _pa ddd	per per per per per per per per per	" " " " " " 577	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ippippippippip ippipip	yn yn yn yn yn yn yn yn yn yn	0 2 3	8
-4d ddd	dd- -a	-a5 577	77 '-f	-f 3e	3e ea	ea a3	a 8

Things to do with the phase II upgrade

Experimental physics

Two examples:

Displaced vertex triggers

(Exotic Higgs & B decays)

Data scouting

(Light diphoton resonances)

Theoretical physics

577 -4d	-f3 dd-	3ee -a5	aa 77	38 - f	d7 3e	c9 ea	a
_pa _pa _pa _pa _pa _pa _pa _pa _pa ddd	per per per per per per per per per	" " " " " " 577	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ippippippippip ippipip	yn yn yn yn yn yn yn yn yn yn	0 2 3	8
-4d ddd	dd- -a	-a5 577	77 '-f	-f 3e	3e ea	ea a3	a 8

Experimental opportunities with the LHC upgrade

CMS L1 track trigger $\eta < 2.4$

Experimental opportunities with the LHC upgrade

CMS L1 track trigger $\eta < 2.4$

- 2.4 Each module independently measures the p_T of the stubs
 - Only stubs with $p_T > 2$ GeV are used in track reconstruction

Experimental opportunities with the LHC upgrade

CMS L1 track trigger

Key point: For moderate displacements, stubs are still reconstructed

In principle, track trigger could find displaced tracks

Y. Gershtein: arXiv 1705.04321 CMS PAS FTR-18-018

Experimental challenge

There are A LOT of displaced tracks!

The TRIGGER DESIGN should keep a decent signal efficiency while bringing down the bandwidth to ~1 kHz

Which signal?

Light new physics is a perfect opportunity

1) Naturally lead to displaced sigr

2) Raising the pT threshold to meet the bandwidth requirements kills the signal efficiency

natures
$$\Gamma \simeq \frac{\lambda}{8\pi}m$$

Exotic Higgs decays

Y. Gerhstein, S. Knapen, D.R.

Which signal?

Light new physics is a perfect opportunity

1) Naturally lead to displaced sigr

2) Raising the pT threshold to meet the bandwidth requirements kills the signal efficiency

natures
$$\Gamma \simeq \frac{\lambda}{8\pi}m$$

Other?

arXiv 2012.07864

Which model? Light single

Light singlet mixed with the Higgs

$$_H S^2 H^{\dagger} H - V_{\rm int}(S)$$

Which model?

$$_H S^2 H^{\dagger} H - V_{\rm int}(S)$$

$$\mathrm{Br}[h \to SS] \approx \frac{\Gamma_{h \to SS}}{\Gamma_{h \to b\bar{b}}} \approx \frac{\lambda_{SH}^2}{6y_b^2 \lambda_H}$$

The Higgs is narrow!

 $\lambda_{SH} = 1.7 \times 10^{-3} \leftrightarrow \text{BR}(h \to SS) = 0.01$

Which model? Light single

$$\mathcal{L}_{S} \supset -\frac{1}{2}\tilde{m}_{S}^{2}S^{2} - \mu SH^{\dagger}H - \frac{1}{2}\lambda_{SH}S^{2}H^{\dagger}H - V_{int}(S)$$

$$\Gamma_S = s_\theta^2 \Gamma_h$$

Light singlet mixed with the Higgs

Which model? Light single

$$\mathcal{L}_{S} \supset -\frac{1}{2}\tilde{m}_{S}^{2}S^{2} - \mu SH^{\dagger}H - \frac{1}{2}\lambda_{SH}S^{2}H^{\dagger}H - V_{int}(S)$$

$$\Gamma_S = s_\theta^2 \Gamma_h$$

Light singlet mixed with the Higgs

Which model?

Light singlet mixed with the Higgs

$$\frac{HS}{II} = \frac{II}{II} = \sqrt{II}$$

$$\frac{II}{II} = \sqrt{II}$$

 10^{2}

Which model? Light singlet mixed with the Higgs

$$HS^{2}H^{\dagger}H - V_{int}(S)$$

$$uced - \mathbb{Z}_{2}$$

$$y \text{ narrow}$$

$$Br[h \rightarrow SS] = 0.01$$

$$dir_{s_{\theta} \gtrsim 0.01}$$

$$G = 0$$

direct
$$-\mathbb{Z}_2$$

 $s_{\theta} \gtrsim 10^{-6} \times \left(\frac{m_S}{1 \text{ GeV}}\right) \times \left(\frac{4\pi}{\sqrt{\lambda_S}}\right)$

S can't be too narrow

caveat dark showers)

OPPORTUNITY FOR Muonic DV + Multitrack DV

OPPORTUNITY FOR Muonic DV + Multitrack DV

Large signal yield with moderate displacement for multitrack DV S. Knapen, et al. [arXiv 2012.07864]

projection of CMS Muonic DV

Large signal yield with moderate displacement for multitrack DV S. Knapen, et al. [arXiv 2012.07864]

projection of CMS Muonic DV

Large signal yield with moderate displacement for multitrack DV S. Knapen, et al. [arXiv 2012.07864]

longer lifetimes are better probed by CODEX-b + MATHUSLA

EXPERIMENTAL STATUS model independently

Difficult triggers but worth doing!

ALPs produced in gluon fusion

$$\mathcal{L}_a \supset -\frac{1}{2}m_a^2 a^2 - \frac{lpha_s}{8\pi} \frac{a}{f_a} G \tilde{G} + \frac{E}{N} \frac{lpha_{
m em}}{8\pi} \frac{a}{f_a} F \tilde{F}$$

ALPs produced in gluon fusion

$$\mathcal{L}_a \supset -\frac{1}{2}m_a^2 a^2 - \frac{\alpha_s}{8\pi}\frac{a}{f_a}G\tilde{G} + \frac{E}{N}\frac{\alpha_{\rm em}}{8\pi}\frac{a}{f_a}F\tilde{F}$$

Filling the gap between 5-70 GeV

 $m_{\gamma\gamma} \simeq \sqrt{p_{T_1}^{\gamma} p_{T_2}^{\gamma}} \times \Delta R_{\gamma\gamma}$ is constrained by trigger requirements on photons pT and isolation (ISO)

ATLAS search to fill the gap

ALPs produced in gluon fusion

$$\mathcal{L}_a \supset -\frac{1}{2}m_a^2 a^2 - \frac{\alpha_s}{8\pi}\frac{a}{f_a}G\tilde{G} + \frac{E}{N}\frac{\alpha_{\rm em}}{8\pi}\frac{a}{f_a}F\tilde{F}$$

ATLAS recently filled most of the gap with data based on a pT-20/22 GeV + loose ISO photon trigger

Cid Vidal, D.R. et al. arXiv 1810.09452

 $m_{\gamma\gamma} \simeq \sqrt{p_{T_1}^{\gamma} p_{T_2}^{\gamma}} \times \Delta R_{\gamma\gamma}$ is constrained by trigger requirements on photons pT and isolation (ISO)

ATLAS search to fill the gap

ALPs produced in gluon fusion

$$\mathcal{L}_a \supset -\frac{1}{2}m_a^2 a^2 - \frac{\alpha_s}{8\pi}\frac{a}{f_a}G\tilde{G} + \frac{E}{N}\frac{\alpha_{\rm em}}{8\pi}\frac{a}{f_a}F\tilde{F}$$

ATLAS recently filled most of the gap with data based on a pT-20/22 GeV + loose ISO photon trigger

Cid Vidal, D.R. et al. arXiv 1810.09452

 $m_{\gamma\gamma} \simeq \sqrt{p_{T_1}^{\gamma} p_{T_2}^{\gamma}} \times \Delta R_{\gamma\gamma}$ is constrained by trigger requirements on photons pT and isolation (ISO)

ALPs produced in gluon fusion

$$\mathcal{L}_a \supset -rac{1}{2}m_a^2 a^2 - rac{lpha_s}{8\pi}rac{a}{f_a}G ilde{G} + rac{E}{N}rac{lpha_{
m em}}{8\pi}rac{a}{f_a}F ilde{F}\,.$$

15 no ISO at L1 with/without tracking Knapen, Kumar, D.R. 2112.07720

Modified ISO to keep the boosted resonance

It looks like the GAP can be completely closed!

Filling the GAP with data scouting

TRIGGERING

Finite band width make experiments theory biased

We will loose important data if we do not ASK to look for it

TRIGGERING

@ FLAVOR EXPERIMENTS

Finite band width make experiments theory biased

We will loose important data if we do not ASK to look for it

Flavor at the intensity frontier

Kaon, B and muon factories benefit from enormous luminosities but have exclusive triggers

Focus on SM rare decays + SM predictions

For a complete review of the missing opportunities in Kaon physics see arXiv 2201.07805

New Physics Searches at Kaon and Hyperon Factories

Editors: Evgueni Goudzovski¹, Diego Redigolo^{2,3}, Kohsaku Tobioka^{4,5}, Jure Zupan⁶

Authors: Gonzalo Alonso-Álvarez⁷, Daniele S. M. Alves⁸, Saurabh Bansal⁶, Martin Bauer⁹, Joachim Brod⁶, Veronika Chobanova¹⁰, Giancarlo D'Ambrosio¹¹, Alakabha Datta¹², Avital Dery¹³, Francesco Dettori¹⁴, Bogdan A. Dobrescu¹⁵, Babette Döbrich¹⁶, Daniel Egana-Ugrinovic¹⁷, Gilly Elor¹⁸, Miguel Escudero¹⁹, Marco Fabbrichesi²⁰, Bartosz Fornal²¹, Patrick J. Fox¹⁵, Emidio Gabrielli^{20,22,23}. Li-Sheng Geng²⁴, Vladimir V. Gligorov²⁵, Martin Gorbahn²⁶, Stefania Gori²⁷, Benjamín Grinstein²⁸ Yuval Grossman¹³, Diego Guadagnoli²⁹, Samuel Homiller³⁰, Matheus Hostert^{17,31,32}, Kevin J. Kelly^{2,15}, Teppei Kitahara³³, Simon Knapen^{2,34,35}, Gordan Krnjaic^{36,37,38}, Andrzej Kupsc^{39,40}, Sandra Kvedaraite⁶, Gaia Lanfranchi⁴¹, Danny Marfatia⁴², Jorge Martin Camalich^{43,44}, Diego Martínez Santos¹⁰, Karim Massri¹⁶, Patrick Meade⁴⁵, Matthew Moulson⁴¹, Hajime Nanjo⁴⁶, Matthias Neubert¹⁸, Maxim Pospelov^{31,32}, Sophie Renner², Stefan Schacht⁴⁷, Marvin Schnubel¹⁸, Rui-Xiang Shi^{25,48}, Brian Shuve⁴⁹, Tommaso Spadaro⁴¹, Yotam Soreq⁵⁰, Emmanuel Stamou⁵¹, Olcyr Sumensari⁵², Michele Tammaro⁵³, Jorge Terol-Calvo^{43,44}, Andrea Thamm⁵⁴, Yu-Chen Tung⁵⁵, Dayong Wang⁵⁶, Kei Yamamoto⁵⁷, Robert Ziegler⁵⁸

Here I am going to focus on MEG II to make an example ...

Probably the most interesting is $K \to \mu \nu \gamma' (e^+ e^-, \mu^+ \mu^-)$

$BR(\mu \to e\gamma) < 4.2 \times 10^{-13}$ MEG 2016

MEG II

1) Photon energy by liquid Xenon scintillator

2) hit on the timing counter

Offline:

3) full mesure of the positron momentum

$BR(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$ MEG 2016 $\leftarrow \rightarrow$ 1) very high intensity

The trigger maximize the efficiency to back to back positron-photon of

Trigger Selection

- 2) very exclusive trigger targeted at $\mu \rightarrow e\gamma$
 - $E = m_{\mu}/2$ See Galli et al. JINST 9 (2014)

Taken from *MEG-RMD* measurement 1312.3217

Besides $R_{\mu^+}^{\text{MEG}} = 3 \times 10^7 \mu^+/\text{sec}$ intensity Very little data can be saved on disk or analysed offline at MEG II

At MEG 10 Hz is the maximal allowed stream

Online the trigger should select 1 "interesting" muon event out of 10^7

In numbers...

Besides $R_{\mu^+}^{\text{MEG}} = 3 \times 10^7 \mu^+/\text{sec}$ intensity Very little data can be saved on disk or analysed offline at MEG II At MEG 10 Hz is the maximal allowed stream Online the trigger should select 1 "interesting" muon event out of 10^7

"interesting" = $\mu \rightarrow e\gamma$ back to back positron-photon of $E = m_{\mu}/2$

In numbers...

Besides $R_{\mu^+}^{\text{MEG}} = 3 \times 10^7 \mu^+/\text{sec}$ intensity Very little data can be saved on disk or analysed offline at MEG II At MEG 10 Hz is the maximal allowed stream Online the trigger should select 1 "interesting" muon event out of 10^7

"interesting" = $\mu \rightarrow e\gamma$ back to back positron-photon of $E = m_{\mu}/2$

All the rest of the data is lost!

In numbers...

Logic: the trigger requirements are killing the ALP signal

*

Logic: the trigger requirements are killing the ALP signal

1) Eliminating the matching of the TC hit which assumes back to back topology

*

2) Lowering the photon trigger threshold reducing the beam intensity

Logic: the trigger requirements are killing the ALP signal

1) Eliminating the matching of the TC hit which assumes back to back topology 2) Lowering the photon trigger threshold reducing the beam intensity

The RC dominates the trigger rate but it can be suppressed by reduging the intensity

 $\mathrm{RC} \sim R_{\mu}^2 \quad \mathrm{RMD} \sim R_{\mu}$

*many thanks to Luca Galli for teaching us all this!

Max trigger rate 10 Hz

fixes the intensity vs photon cut

RMD becomes the dominant bkd

below a certain intensity

(harder to suppress RMD online)

MEG II-ALP can improve on TWIST with only 1 month of data taking*

* the band in the reach is due to the uncertainty into our estimate of the trigger rate

* the band in the reach is due to the uncertainty into our estimate of the trigger rate

* we cut photon below 10 MeV, maybe MEG II detector can do better

* we cut photon below 10 MeV, maybe MEG II detector can do better

* no systematic uncertainties have been accounted for in this reach

- * the band in the reach is due to the uncertainty into our estimate of the trigger rate

New Opportunities to hunt for new physics with current experiments

TRIGGERING

•••

New Opportunities to hunt for new physics with current experiments

TRIGGERING

@ FLAVOR EXPERIMENTS

• • •