

CMS

Università di Roma

Tor Vergata

esent

MAS

Umberto De Sanctis

(INFN & Università Roma Tor Vergata) on behalf of the ATLAS and CMS Collaborations

> Run: 333181 Event: 1942573294 2017-08-16 07:27:32 CEST

<u>E X P E R I M E N T</u>

Outline

- Both ATLAS and CMS have a wide program in flavour physics
 - Rare Decays (see L. Guzzi's talk yesterday)
 - Spectroscopy (including "exotic states" searches)
 - B-hadrons properties (masses, lifetimes, etc..)
 - Bc physics
 - Quarkonia (single and associated production)
- Focus of this talk is on measurements related to the CKM matrix
 - > Measurement of Φ s angle in Bs \rightarrow J/ $\Psi\Phi$ decay
 - > Measurement of CKM matrix elements involving the top quark in single top and $t\bar{t}$ events

The ATLAS and CMS Experiments (3)

- ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) are two "general purpose" detectors
 - > Optimised for the high- P_T physics (W, Z, top, Higgs, SUSY etc)
 - Can be adapted with great success to measurements in flavour physics in few specific areas
 - Similar overall design but different sub-detectors and technologies employed
 - → The main difference for flavour physics is the solenoid magnetic field strength (2T for ATLAS, 3,8T for CMS) → Better resolution for "low-P_T" objects (tracks and muons mainly)

Integrated luminosities

- ATLAS/CMS collected data from 2010 to 2018 at a centre-of-mass energy $\sqrt{s} = 7,8$ and 13 TeV
 - ▶ Run I (2010-2013) \rightarrow ~ 5 fb⁻¹ @ 7 TeV + ~ 20 fb⁻¹ @ 8 TeV
 - ▶ Run 2 (2015-2018) \rightarrow ~ 140 fb⁻¹ @ 13 TeV
 - Good for physics"

About 30 fb⁻¹ already collected by the two experiments in Run 3...

 \geq

Typical B-physics signatures

- B-physics signatures at hadron colliders are mainly made by:
 - ➤ Low transverse momentum (P_T) muons → Tracking system + muon system
 - \succ Tracks in the Inner detector \rightarrow Tracking system
 - ightarrow Rarely photons/electrons ightarrow Electromagnetic calorimeter

Trigger these events is complicated due to low thresholds in muon P_T → Incompatible with bandwidth constraints at high lumin.
 In addition both ATLAS and CMS do not have specific detectors for particle identification → Kaons, pions, protons are all "just" tracks

Triggering events at ATLAS and CMS (

ATLAS

- ➢ Regional readout → Define a Region → of Interest (RoI) around the LI muons →
 - $\blacktriangleright \quad \text{Lower rate but less efficient for low-} P_{T}$
 - Primary trigger in most of Run I
 - Run2 :Topological trigger! Use info on PT,
 η and φ of the muon ROIs to build
 topological di-μ quantities (inv.mass, ΔR):
 - Gain up to a factor of 3 in di-muon background rejection!
 - Baseline for 2017-2018 data (with MU4_MU6 and 2MU6 thresholds
- Possibility to have more bandwidth at the end of the fills

Delayed reconstruction at Tier-0

Uni

CMS

- > 2 level trigger as ATLAS
 - LI hardware; HLT software
- From 2018 a "data-parking" strategy has been applied → Save more data on disk for a subsequent reconstruction
 - $\succ~$ Requiring at LI+HLT a displaced μ
- I0 billions b-hadrons pairs saved on disk
 - ➢ Procedure validated by the reconstruction of a subset of them using the B → D*µv →

Tor Vergata

Istituto Nazionale di Fisica Nucleare

Bs $\rightarrow J/\Psi \Phi$ measurement

- Flavour tagging calibration done using $\mathbf{B}^{\pm} \rightarrow \mathbf{J}/\Psi \mathbf{K}^{\pm}$
- Information on B^{\pm} flavour \geq extracted from the kaon charge
- \geq Flavour tagging probability affects significantly the precision on the extraction of the parameters
- Total tagging power: 1.65% \triangleright (ATLAS); ~10% (CMS)

ATLAS

Entries / 3 MeV

o/(lij-etap)

Tor Vergata

45

40

35

30

25

20 15

10

Angular analysis with 10 amplitude functions is done (J/ $\Psi\Phi$ is a superposition of CP eigenstates!!)

= 13 TeV, 80.5 fb

Istituto Nazionale di Fisica Nucleare

Bs $\rightarrow J/\Psi\Phi$ measurement

- Extract the 10 parameters from a global simultaneous fit to the various distributions (mass, angles, etc)
- ► CMS applies a cut on Lxy to J/ Ψ triggers \rightarrow better S/B but MC efficiency param. more difficult to treat
- CMS uses DNNs to improve tagging power
- Focus on three parameters:
 - \succ Γ_s (decay width)
 - $\succ \Delta \Gamma_s$ (difference of the widths)
 - > Φ_s (the CPV weak-phase)

Bs $\rightarrow J/\Psi\Phi$ measurement

- Extract the 10 parameters from a global simultaneous fit to the various distributions (mass, angles, etc.)
- CMS applies a cut on Lxy to J/ Ψ triggers \rightarrow better S/B but MC efficiency param. more difficult to treat
- CMS uses DNNs to improve tagging power

D0 8 fb⁻¹

LHCb 4.9 fb⁻¹

0.1

2021

68% CL contours

 $(\Delta \log \mathcal{L} = 1.15)$

CDF 9.6 fb⁻¹

0.3

CMS 116.1 fb⁻¹

- Focus on three parameters:
 - \succ Γ_s (decay width)

Combined*

-0.1

 $\Delta \Gamma_s$ errors scaled by 1.72

ATLAS 99.7 fb⁻

-0.3

- $\succ \Delta \Gamma_s$ (difference of the widths)
- $\blacktriangleright \Phi_s$ (the CPV weak-phase)

Istituto Nazionale di Fisica Nucleare

Università di Roma

0.11

0.09

0.07

0.05 -0.5

 \succ Γ_s «tension» between ATLAS and CMS/LHCb

 $\phi_{c}^{J/\psi KK}$ [rad]

Supporting measurements ongoing to clarify this discrepancy

ΔΓ^{//ψKK}[ps⁻¹]

CKM elements from top events

 \succ LHC is a real top factory: why don't we use these events to measure CKM elements involving the top quark?

 \succ The process that best suits for these measurements is the single top events production

- > 3 channels (ordered by production x-sec)
 - t-channel
 - Wt channel
 - ≻ s-channel
- \succ Leptonic decay of the top quark: t \rightarrow Wb \rightarrow blv
 - Only electrons and muons are used
- High-PT single lepton triggers used
 - Thresholds around 20-27 GeV (depends on inst. lumin.)

Single top & |V_{tb}|

 \geq $|V_{tb}|$ can be extracted from the cross-section measurements of the three processes (t-,Wt- and s- channels)

> Direct cross-section measurement to be compared with theoretical predictions (which assumes $|V_{tb}| = 1$)

 \succ Sensitive also to modifications of the LH coupling tWb in the SM \mathbf{f}_{LV}

$$|f_{\rm LV}V_{tb}| = \sqrt{\frac{\sigma_{\rm meas.}}{\sigma_{\rm theo.} (V_{tb}=1)}}.$$

 \succ **f**_{LV} assumed to be real

Some assumption is needed:

 $\geq |\mathsf{V}_{\mathsf{tb}}| >> |\mathsf{V}_{\mathsf{ts}}| + |\mathsf{V}_{\mathsf{td}}|$

>Well motivated by global CKM fits of B-physics measurements (but assumes CKM matrix unitarity)

➤tWb coupling is LH

 \succ The determination of $|f_{LV}V_{tb}|$ is independent from assumptions of:

CKM unitarity

Number of quark generations

Università di Roma

Istituto Nazionale di Fisica Nucleare

Measuring single-top x-sec in t-channel (13)

- > Both experiments use a similar strategy. Events with
 - > One isolated prompt lepton (e/ μ) with PT > 25-30 GeV
 - At least one high-PT jet
 - Missing transverse energy > 30 GeV
 - One jet must be b-tagged
 - > m(lb) < 160 GeV (the kinematic limit for t \rightarrow Wb decay)
- Main backgrounds:
 - \succ $t\bar{t}$, W + jets, multijet events
 - > Estimated in specific control regions and extrapolated through validation regions

 \succ Mixed approach: MC simulation (with normalisation fitted in data) and data-driven techniques.

Measuring single-top x-sec in t-channel (14

> Neural Networks are used to further reduce the $t\overline{t}$ and W + jets backgrounds

> based on kinematic variables describing production and decay

Two SR depending on the charge of the lepton

Cross-section extracted through a binned ML fit to the NN output
 Main systematics:

Lepton reconstruction, JES and NLO corrections

> Overall precision ~ 5%

Extracting |V_{tb}|

Combination

Combination of the x-sec measured by ATLAS and CMS at 7 and 8 TeV in the three channels

		AT	LAS	CMS		
\sqrt{s}	Process	$\sigma [{ m pb}]$	Lumi. $[fb^{-1}]$	$\sigma[{ m pb}]$	Lumi. $[fb^{-1}]$	
	t-channel	$68~\pm~8$	4.59	$67.2~\pm~6.1$	1.17 – 1.56	
$7 { m TeV}$	tW	$16.8~\pm~5.7$	2.05	16^{+5}_{-4}	4.9	
	s-channel			$7.1~\pm~8.1$	5.1	
	t-channel	$89.6_{-6.3}^{+7.1}$	20.2	$83.6~\pm~7.8$	19.7	
$8 { m TeV}$	tW	$23.0^{+3.6}_{-3.9}$	20.3	$23.4~\pm~5.4$	12.2	
	s-channel	$4.8^{+1.8}_{-1.5}$	20.3	13.4 ± 7.3	19.7	

Methodology:

> Best Linear Unbiased Estimator (BLUE) (i.e. minimisation of a global χ^2 including correlations among measurements)

To be compared with indirect measurement from CKM fit $|V_{tb}| = 0.999105 \pm 0.000032$ LNF, 10/11/2022

V_{tb} & V_{ts} + V_{td} ≻ First measurement at 13 TeV by CMS in t-channel

<u>CMS</u>

> Aim to extract from single top events | V_{tb} |, | V_{ts} |, | V_{td} | simultaneously

- > Idea: look at all top decays and categorise them into the 3 possible decays: t \rightarrow Wb,
 - $t \rightarrow Ws, t \rightarrow Wd$ to measure the overall BR($t \rightarrow Wq$) and the single BRs
 - Differences arise from:
 - Jet flavour
 - Jet composition

Kinematic of the event depending on the quark involved in production
 Different categories based on these properties to disentangle the following contributions in production and decay

Production	Decay	Cross section \times branching fraction (pb)
tWb	tWb	217.0 ± 8.4
tWb	(tWs + tWd)	0.41 ± 0.05
tWd	tWb	0.102 ± 0.015
tWs	tWb	0.92 ± 0.11
	-	

> 3 BDTs are used to discriminate between categories

The 3 CKM elements are extracted from a simultaneous ML fit to M_T (W) first (to fix the QCD normalis.) and then to the discriminator variable distribution for the various event categories

 $|V_{tb}| \& |V_{ts}| + |V_{td}|$

From the observed x-sec one can extract 2 signal strenght parameters:

CP-violation in b-decays

- Look for CP violation in b-semileptonic decays @ 8 TeV
- \geq 2 muons: one from the W, one from the b-cascade
- Count the number of same-charge/opposite-charge muons N⁺⁺, N⁻⁻, N⁺⁻, N⁻⁺
- > Build inclusive asymmetries sensitive to CP violation both in $B^0 - \overline{B}^0$ mixing and direct b/c semileptonic decays

LNF, 10/11/2022

Tor Vergata

CP-violation in b-decays

- Standard semileptonic tt selection + a muon inside a jet
- ➤ Kinematic reconstruction of the event → Associate the muon to top/antitop decay

$$A^{ss} = r_b A^{bl}_{\text{mix}} + r_{c\bar{c}} A^{bc}_{\text{mix}} + r_c A^{bc}_{\text{dir}} - (r_c + r_{c\bar{c}}) A^{cl}_{\text{dir}}$$

 $A^{os} = \tilde{r}_c A^{bc}_{\text{mix}} + \tilde{r}_b A^{bl}_{\text{dir}} + (\tilde{r}_c + \tilde{r}_{c\bar{c}}) A^{cl}_{\text{dir}}$

r_i are the fractions in MC for the various decay modes
 Asymmetries unfolded at particle level

$$A_{\text{mix}}^{b} = \frac{A^{\text{ss}}}{r_{b} + r_{c\overline{c}}} = -0.025 \pm 0.021 \text{ (stat.)} \pm 0.008 \text{ (expt.)} \pm 0.017 \text{ (model)}$$

$$A_{\text{dir}}^{b\ell} = \frac{A^{\text{os}}}{\tilde{r}_{b}} = 0.005 \pm 0.004 \text{ (stat.)} \pm 0.001 \text{ (expt.)} \pm 0.003 \text{ (model)}$$

$$A_{\text{dir}}^{c\ell} = \frac{-A^{\text{ss}}}{r_{c} + r_{c\overline{c}}} = 0.009 \pm 0.007 \text{ (stat.)} \pm 0.003 \text{ (expt.)} \pm 0.006 \text{ (model)}$$

$$A_{\text{dir}}^{bc} = \frac{A^{\text{ss}}}{r_{c}} = -0.010 \pm 0.008 \text{ (stat.)} \pm 0.003 \text{ (expt.)} \pm 0.007 \text{ (model)}$$

Results consistent with the SM

Università di Roma

Tor Vergat

> Need more precision on A_{mix}^{b} (< 10⁻³); First direct limit on A_{dir}^{bc}

	Data	(10^{-2})	MC ((10^{-2})	Existing limits (2σ)	(10^{-2})	SM predic	tion (10^{-2})
A^{ss}	-0.7	± 0.8	0.05	± 0.23	-		$< 10^{-2}$	[19]
A^{os}	0.4	± 0.5	-0.03	± 0.13	-		$< 10^{-2}$	[19]
$A^b_{\rm mix}$	-2.5	± 2.8	0.2	± 0.7	< 0.1	[95]	$< 10^{-3}$	[96] $[95]$
$A_{ m dir}^{b\ell}$	0.5	± 0.5	-0.03	± 0.14	< 1.2	[94]	$< 10^{-5}$	[19] $[94]$
$A_{\mathrm{dir}}^{c\ell}$	1.0	± 1.0	-0.06	± 0.25	< 6.0	[94]	$< 10^{-9}$	[19] $[94]$
$A_{\rm dir}^{bc}$	-1.0	± 1.1	0.07	± 0.29	-		$< 10^{-7}$	[97]
INF 10/11/2022								

Conclusions & outlooks

- ATLAS and CMS have a very focused program of measurements related to CKM matrix
- The parameters measured are:
 - ► The weak-phase Φ_s in Bs → J/ $\Psi\Phi$ decay
 - The three CKM elements involving the top quark in single top events
- All measurements are at the moment compatible with the SM
- Effort started in the LHC HFWG to combine Φ_s measurements from the 3 experiments, now on hold (waiting for full Run 2 results)
- Since several years the two experiments works together within the LHC Top WG to combine single top measurements
 - Most precise direct measurement of $|V_{tb}| = 1.02 \pm 0.04 \pm 0.02$
 - Recent measurement by CMS determining $|V_{tb}|$ and $|V_{ts}|$ + $|V_{td}|$ directly from with no assumptions on CKM unitarity.
- Possible future measurements of CP asymmetries involving inclusive
 b→µ+X decays

BACKUP

Unbinned maximum likelihood fit applied simultaneously to B_s^0 mass, decay time and decay angles.

Observables

• Basic observables : m_i , t_i , Ω_i

Conditional observables per-candidate:

resolutions: σ_{m_i}, σ_{t_i}
tagging probability and method: P(B|Q)

Physics parameters

- CPV phase ϕ_s
- Decay widths: $\Delta \Gamma_s$, Γ_s
- Decay amplitudes: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, δ_{\parallel} , δ_{\perp}
- S-wave: |A_S(0)|², δ_S
- Δm_s fixed to PDG

Opposite side Tagging

Tag method Efficiency [%] Effective Dilution [%] Tagging Power [%] Tight muon 0.862 ± 0.009 4.50 ± 0.01 43.8 ± 0.2 Electron 1.57 ± 0.01 41.8 ± 0.2 0.274 ± 0.004 29.9 ± 0.2 0.278 ± 0.006 3.12 ± 0.01 Low- $p_{\rm T}$ muon 5.54 ± 0.01 20.4 ± 0.1 0.231 ± 0.005 Jet Total 14.74 ± 0.02 33.4 ± 0.1 1.65 ± 0.01

ATLAS $B_s^0 \rightarrow J/\psi\phi$ Combination Run2 + 1. Comparison with CMS and LHCb

	Solution (a)				
Parameter	Value	Statistical	Systematic		
		uncertainty	uncertainty		
ϕ_s [rad]	-0.087	0.036	0.021		
$\Delta\Gamma_s [\mathrm{ps}^{-1}]$	0.0657	0.0043	0.0037		
$\Gamma_s [ps^{-1}]$	0.6703	0.6703 0.0014			
$ A_{\parallel}(0) ^2$	0.2220	0.0017	0.0021		
$ A_0(0) ^2$	0.5152	0.0012	0.0034		
$ A_{S} ^{2}$	0.0343	0.0031	0.0045		
δ_{\perp} [rad]	3.22	0.10	0.05		
δ_{\parallel} [rad]	3.36	0.05	0.09		
$\delta_{\perp} - \delta_S$ [rad]	-0.24	0.05	0.04		
5 5 5 5 5 5 5 5 5 5 5 5 5 5	IS 7, 8, 13 TeV CL contours	Run1, 7 and 8 TeV, 19.2 fb ⁻¹ 13 TeV, 80.5 fb ⁻¹ Combined 19.2 + 80.5 fb ⁻¹			

- ϕ_s result consistent with results from CMS, LHCb and SM
- Competitive single measurement of ΔΓ_s, Γ_s and helicity parameters
- Still to add 60 fb^{-1} from 2018

- ATL-PHYS-PUB-2018-041
- Inner Detector upgrade: proper decay time resolution improved by 21% w.r.t. Run 2
- Three trigger scenarios for muon momenta thresholds

CMS

ສັ0.12

0.1

0.08

0.06

0.04

0.02-

0

5 10

 φ_s precision improves (9 - 20) times w.r.t.Run1, or (4 - 9) times w.r.t. current result combining Run1 and Run2 99.7 fb⁻¹

Preliminary

Phase 2 Simulation

Phys.Lett.B 757 (2016) 97-120

15 20 25 30 35 40 45 50

ct uncertainty [µm]

2012 Data

Kinematic Likelihood Fitter

- KLFitter is designed to provide kinematic fitting using a likelihood approach (arXiv:1312.5595)
- Used to fully reconstruct the $t\bar{t}$ event topology
- Allows for determination of the initial charge of the *b*
 - For same-top SMT muons : $W^{\pm} \Rightarrow b^{\mp}$
 - For different-top SMT muons : $W^{\pm} \Rightarrow b^{\pm}$
- Calculates a likelihood (event probability,) for the four reconstructed jets to produce each possible permutation – maximum likelihood permutation is taken as correct jet topology
- KLFitter performs with around 80% purity after extensive optimisation

Istituto Nazionale di Fisica Nucleare

LNF, 10/11/2022

25

Physics Department

Same-Top KLFitter Decision

Lepton charge pairs

Different-Top KLFitter Decision

Lepton charge pairing distributions showing the data in solid circles, the $t\bar{t}$ simulation in white, the single-top in blue, the W+jets in yellow and all other backgrounds in purple. The hashed area represents all experimental systematic uncertainties as well as the b-hadron production and hadron-to-muon branching ratio uncertainties.

LNF, 10/11/2022

Physics Department

26

Unfolding

Physics Department

$$N_{\text{fid}}^{i} = \frac{1}{\epsilon^{i}} \cdot \sum_{j} M_{ij}^{-1} \cdot f_{\text{acc}}^{j} \left(N_{\text{data}}^{j} - N_{\text{bkg}}^{j} \right)$$

$$f_{\rm acc}^{j} \equiv \left(\frac{N_{\rm reco\wedge part}}{N_{\rm reco}}\right)^{j} \qquad \epsilon^{i} \equiv \left(\frac{N_{\rm reco\wedge part}}{N_{\rm part}}\right)^{j}$$

- f_{acc}^{i} = Applied bin-by-bin to correct for SMT muons that are present at the reconstruction level, but not at the fiducial level.
- *M_{ij}* = Discrete 4x4 Response Matrix. Corrects for migrations between 4 CA bins, these are caused by mistakes in ST/DT identification due to KLF performance or due to charge mis-ID on the triggered leptons (extremely small effect)
- $\frac{1}{\epsilon^i}$ = Applied bin-by-bin to the unfolded data to correct for SMT muons that are present at the particle-level, but not at the reconstruction level.

	N^{++}_{j}	$N^{}j$	$N^{+-}{}_j$	N^{-+}_{j}
$N^{++}i$	0.79	0.00	0.00	0.21
N <i>i</i>	0.00	0.79	0.21	0.00
$N^{+-}i$	0.00	0.21	0.79	0.00
$N^{-+}i$	0.21	0.00	0.00	0.79

