

Tests of lepton universality at NA62

Michele Corvino, CERN Frascati (Italy), 10/11/2022

Lepton flavour universality

One of the key properties of the SM is lepton flavour universality (LFU): **the couplings with the gauge bosons do not depend on the flavour of the leptons involved**

The possibility for LFU violation is motivated by several tensions between the theoretical expectations and the experimental results:

- Muon magnetic moment
- Cabibbo angle anomaly
- B mesons anomaly

LFU tests in the kaon sector: the ratio R_{κ}

A clean LFU tested is obtained measuring the ratio

$$R_K = \frac{\Gamma(K^+ \to e^+ \nu_e)}{\Gamma(K^+ \to \mu^+ \nu_\mu)}$$

which is a good candidate for two main reasons:

• helicity suppression in the SM of $K^+ \rightarrow e^+ \nu_e$

• very precise theoretical estimation

- Very sensitive to new physics
- Hadronic uncertainties cancel in the ratio

SM prediction $R_K = (2.477 \pm 0.001) imes 10^{-5}$ Cirigliano and Rosell, Phys. Rev. Lett. 99, 231801

\boldsymbol{R}_{κ} beyond the SM

In BSM scenarios, R_{κ} can receive contributions from

- leptoquarks
- 2HDM: dominant contributions from charged Higgs
- MSSM
- SM extensions with 4th generation, sterile neutrinos

Experimental status on R_k

NA62 provided the most precise measurement on $R_{\kappa}\xspace$ in 2013

$$R_K^{exp} = (2.488 \pm 0.009) \times 10^{-5}$$

Remarkable experimental precision: **0.4%**

However **10x larger** than the theoretical uncertainty

10/11/2022

The NA62-R_k experimental setup

Data taking with simultaneous K^+/K^- beams in 2007-2008

Kaon decays collected: 2×10^{10}

10/11/2022

Lepton Flavour Universality tests at NA62

Analysis strategy

 R_{κ} measured using the following formula:

$$R_{K} = \frac{1}{D} \cdot \frac{N(K_{e2}) - N_{B}(K_{e2})}{N(K_{\mu 2}) - N_{B}(K_{\mu 2})} \cdot \frac{A(K_{\mu 2})}{A(K_{e2})} \cdot \frac{f_{\mu} \times \epsilon(K_{\mu 2})}{f_{e} \times \epsilon(K_{e2})} \cdot \frac{1}{f_{LKr}}$$

Main backgrounds:

- muon halo;
- muon misidentification as electrons in Lkr

Mis-ID probability estimated using a specific dataset

Event selection

- One downstream track, in acceptance of the downstream detectors, 13 GeV/c
- CDA < 3.5 cm with respect to the beam axis (muon halo suppression)
- Reconstructed vertex in the decay volume
- No activity in the Lkr if not associated to the track
- Geometric cuts to suppress background from muon halo

Signal regions identified in the squared missing mass distributions

Results

Uncertainty dominated by the background in the K_{e2} region

 $R_K = (2.488 \pm 0.010) \times 10^{-5}$

CERN

The NA62 experiment

Main differences wrt NA62-RK:

- Beam spectrometer (GTK)
- Hermetic photon veto
- RICH detector for PID

10/11/2022

Towards a better measurement of R_{κ}

Source	$\delta R_K(\times 10^{-5})$
Statistical	0.007
$K_{\mu2}$ background	0.004
$K^{\pm} ightarrow e^{\pm} u \gamma (SD^{+})$ background	0.002
$K^{\pm} ightarrow \pi^0 e^{\pm} u, \; K^{\pm} ightarrow \pi^{\pm} \pi^0$ backgrounds	0.003
Beam halo background	0.002
Spectrometer material composition	0.002
Acceptance correction	0.002
Spectrometer alignment	0.001
Electron identification inefficiency	0.001
Lkr readout inefficiency	0.001
1-track trigger inefficiency	0.001
Total systematic	0.007
Total	0.010

Higher intensity beam

Towards a better measurement of R_{κ}

Source	$\delta R_K(\times 10^{-5})$	
Statistical	0.007	Higher intensity beam
$-K_{\mu 2}$ background	-0.004	PID with RICH
$K^{\pm} ightarrow e^{\pm} u \gamma (SD^{+})$ background	0.002	
$K^{\pm} ightarrow \pi^0 e^{\pm} u, \ K^{\pm} ightarrow \pi^{\pm} \pi^0$ backgrounds	0.003	
Beam halo background	0.002	
Spectrometer material composition	0.002	
Acceptance correction	0.002	
Spectrometer alignment	0.001	
Electron identification inefficiency	0.001	
Lkr readout inefficiency	0.001	
1-track trigger inefficiency	0.001	
Total systematic	0.007	
Total	0.010	

Towards a better measurement of R_k

Towards a better measurement of R_k

Towards a better measurement of R_k

New measurement of R_K: strategy

The NA62 TDAQ system allows to collect data with different trigger streams

Each trigger stream is associated to a downscale factor in order to keep the data rate under control

Characteristics of an ideal trigger stream for R_{κ} measurement:

- Same for K_{e2} and $K_{\mu 2}$ decays;
- no downscale;

To have the same trigger stream with D = 1, $BR(K_{\mu 2})$ is extracted from events with muon decays in flight in the decay volume

New measurement of R_{κ} : analysis status

 R_{κ} measured by:

$$R_K = \frac{N(K_{e2}) - N_B(K_{e2})}{N(K_{\mu e}) - N_B(K_{\mu e})} \cdot \frac{A(K_{\mu e})}{A(K_{e2})}$$

Common selection, signals regions defined in the squared missing mass distribution

Analysis ongoing: statistics collected much larger than NA62-R $_{\kappa}$

Other LFU tests in the kaon sector

LFU can be checked also using other kaon decays:

- $K^+ \rightarrow \pi^+ l^+ l^-$ decays (see also M. D'Errico's talk)
- $K \rightarrow \pi l \nu$ decays (see also F. Brizioli's talk)

In particular, for the latter one has

$$r_{\mu e} = \frac{(R_{\mu e})_{obs}}{(R_{\mu e})_{SM}} = \frac{\Gamma_{\mu 3}}{\Gamma_3} \cdot \frac{I_{e3}(1+\delta_{e3})}{I_{\mu 3}(1+\delta_{\mu 3})}$$

Currently, for charged kaons $r_{\mu e} = 0.999(9)$

Other LFU tests in the kaon sector

LFU can be checked also using other kaon decays:

- $K^+ \rightarrow \pi^+ l^+ l^-$ decays (see also M. D'Errico's talk)
- $K \rightarrow \pi l \nu$ decays (see also F. Brizioli's talk) In particular, for the latter one has 0.1%precision $r_{\mu e} = \frac{(R_{\mu e})_{obs}}{(R_{\mu e})_{SM}} = \frac{\Gamma_{\mu 3}}{\Gamma_3} \cdot \frac{I_{e3}(1 + \delta_{e3})}{I_{\mu 3}(1 + \delta_{\mu 3})}$ few %
 precision

Currently, for charged kaons $r_{\mu e} = 0.999(9)$

Conclusions

LFU is a key parameter to search for New Physics

NA62 already contributed to LFU tests with the most precise measurement of $R_{\mbox{\tiny K}}$

Analysis ongoing to reduce the uncertainty thanks to the improved experimental setup

Other decays can be measured by NA62 to provide further tests of LFU

