First-row CKM unitarity and related measurements from NA62

Francesco Brizioli (CERN)

francesco.brizioli@cern.ch

on behalf of the NA62 Collaboration

Workshop on status and perspectives of physics at high intensity

INFN-LNF, November 10, 2022

Francesco Brizioli (CERN)

- Theoretical context and motivations
- The NA62 experiment
- $R_{32} = \Gamma(K_{\mu 3}) / \Gamma(K_{\mu 2})$ @ NA62
- K₁₃ form factors @ NA62
- Radiative $K_{e3\gamma}$ decay @ NA62
- V_{us}/V_{ud} @ NA62

First-row CKM unitarity: state of the art [PDG 2022]

$$\begin{aligned} \mathsf{CKM} \ \mathsf{matrix} \ - \ \mathsf{Wolfenstein} \ \mathsf{parametrization} \\ V_{\mathrm{CKM}} &= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \end{aligned}$$

$$\lambda = sin(\theta_{Cabibbo}) = V_{us} = 0.2243 \pm 0.0008$$

 $V_{ud} = 0.97373 \pm 0.00031$

Most stringent test of unitarity in the CKM matrix

$$\begin{split} |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 &= 1 + \Delta_{CKM} \\ \Delta_{CKM} &= (-1.5 \pm 0.6_d \pm 0.4_s) \cdot 10^{-3} \to 2.1\sigma \\ |V_{ub}|^2 &< 2 \cdot 10^{-5} \to \text{negligible} \end{split}$$

Francesco Brizioli (CERN)

First-row CKM unitarity: state of the art [arXiv:2111.05338v2 (May 2022)]

Global fit output (1 σ ellipse):

- $V_{us} = 0.22406 \pm 0.00034$
- $V_{ud} = 0.97357 \pm 0.00027$

Differences with respect to PDG:

- Individual inputs taken from the various channels
- PDG first averages V_{us} from K_{l2} and K_{l3} and gets a first scale factor
- au data for V_{us} included for the final estimate

$$\Delta_{\textit{CKM}} = (-1.95 \pm 0.53) \cdot 10^{-3} \rightarrow 3.7\sigma$$

Cabibbo Angle Anomaly

Determination of $|V_{us}|$ from K_{l3} decays $(K \rightarrow \pi I \nu, I = e, \mu)$

$$\Gamma_{K\ell 3} = \frac{G_F^2 M_K^5}{192\pi^3} S_{EW} (1 + \delta_K^\ell + \delta_{SU2}) C^2 |V_{us}|^2 f_+^2(0) I_K^\ell$$

Inputs from theory

- $f_+(0)$: form factor at zero momentum transfer for the $l\nu$ system
- δ'_K : form factor correction for long-distance EM effects
- δ_{SU2} : form-factor correction for SU(2) breaking

Inputs from experiments

- Γ_{KI3} : K_{I3} rates corrected to include radiative IB (form factors crucial to determine the experimental acceptance of the K_{I3} selections)
- I_K^l : phase space integral, based on form factors: higher precision for e (only vector form factor) than for μ (vector and scalar form factors)

Determination of $|V_{us}|/|V_{ud}|$ from $K \to \mu\nu$ and $\pi \to \mu\nu$ decays

$$\frac{|V_{us}|}{|V_{ud}|}\frac{f_{K^+}}{f_{\pi^+}} = F(m_{\mu}, m_{\pi^+}, m_{K^+}) \cdot (1 + \delta_{EM} + \delta_{SU2}) \cdot \left[\frac{\Gamma(K \to \mu\nu)}{\Gamma(\pi \to \mu\nu)}\right]^{\frac{1}{2}}$$

Inputs from theory

- f_{K^+}/f_{π^+} : ratio of decay constants (cancellation of lattice-scale uncertainties from ratio)
- δ_{EM} : form factor correction for long-distance EM effects
- δ_{SU2} : form-factor correction for SU(2) breaking

Inputs from experiments

• $\Gamma(K \to \mu \nu)$ and $\Gamma(\pi \to \mu \nu)$: rates inclusive of IB radiative corrections

$\Gamma(K^+ \to \pi^0 \mu^+ \nu) / \Gamma(K^+ \to \mu^+ \nu)$ and New Physics scenarios

- In the Standard Model, the W boson couples only to LH chiral fermion states
- New Physics with couplings to RH currents could explain both unitarity deficit and $K_{\mu3}/K_{\mu2}$ difference
- ϵ_R : admixture of RH currents in the non-strange sector
- $\epsilon_R + \Delta_{\epsilon_R}$: admixture of RH currents in the strange sector

[arXiv:2208.11707v1 (Aug 2022)]

The NA62 experiment at CERN

- Detector installation completed in 2016.
- Run 1: 2016, 2017 and 2018.
- Main goal: B(K⁺ → π⁺νν̄) measurement; NA62 programme covers the full K⁺ physics.
- Measurement of B(K⁺ → π⁺νν̄) from full Run 1 published: [JHEP 06 (2021) 093].
- Data taking resumed in July 2021, approved until CERN LS3.

NA62 is located at CERN in the *North Area*, exploiting a 400 GeV/c proton beam extracted from the SPS accelerator.

NA62 beam [2017 JINST 12 P05025]

- SPS beam: 400 GeV/c proton on beryllium target
- Secondary hadron 75 GeV/c beam
- 70% pions, 24% protons, 6% kaons
- Nominal beam particle rate (at GTK3): 750 MHz @ 3 s effective spill length
- Average beam particle rate during 2018 data-taking: $\sim 65\%$ of the nominal
- ${ullet}$ Average beam particle rate during 2022 data-taking: $\sim 100\%$ of the nominal

NA62 detector [2017 JINST 12 P05025]

KTAG: Cherenkov threshold counter;

- GTK: Si pixel beam tracker;
- CHANTI: stations of plastic scintillator bars;
- LAV: lead glass ring calorimeters;
- STRAW: straw magnetic spectrometer;
- RICH: Ring Imaging Cherenkov counter;
- MUV0: off-acceptance plane of scintillator pads;

- CHOD: planes of scintillator pads and slabs;
- IRC: inner ring shashlik calorimeter;
- LKr: electromagnetic calorimeter filled with liquid krypton;
- MUV1,2: hadron calorimeter;
- MUV3: plane of scintillator pads for muon ID;
- HASC: near beam lead-scintillator calorimeter;
- SAC: small angle shashlik calorimeter.

NA62: possible measurement of $R_{32} = \Gamma(K^+ \to \pi^0 \mu^+ \nu) / \Gamma(K^+ \to \mu^+ \nu)$

State of the art

 $R_{32}^{PDG\ 2022\ fit}=0.0527\pm0.0006\ (\simeq1\%$ relative uncertainty)

- Measurement statistically dominated by $K^+ o \pi^0 \mu^+ \nu$ ($\mathcal{B} \simeq 3\%$)
- At the nominal beam intensity NA62 collects about $N_K \sim 10^{10}$ kaon decays per day
- In standard $K \to \pi \nu \nu$ data taking conditions, the minimum bias trigger mask is downscaled by a factor of 600
- In 1 year (i.e. ~ 200 days) of standard data taking a statistical uncertainty smaller than 0.1% could be achieved ($\sim 5\cdot 10^6$ events), but the systematic uncertainty is above 1%
- Exploring the possibility of **10 days of dedicated data taking**, with minimum bias trigger mask not downscaled, and 1% of nominal beam intensity: $\sim 2 \cdot 10^6$ events with strong suppression of the systematic uncertainty \rightarrow total uncertainty of 0.5% achievable

Francesco Brizioli (CERN)

Possible scenarios with measurement of $R_{32} = \Gamma(K^+ \to \pi^0 \mu^+ \nu) / \Gamma(K^+ \to \mu^+ \nu)$ from NA62

$$\left[rac{\Gamma({\cal K}^+ o \pi^0 \mu^+
u)}{\Gamma({\cal K}^+ o \mu^+
u)}
ight]^{-rac{1}{2}} \propto (1-2\Delta_{\epsilon_R})$$

Possible scenarios with 0.5% precision measurement from NA62

- \bullet Result: same as current fit \rightarrow almost same precision as result from world average
- Result: current fit $+1.5\sigma \rightarrow \Delta_{\epsilon_R}$ significance goes to 0.2σ , i.e. have the current tensions "only" an experimental origin?
- Result: current fit $-1.5\sigma \rightarrow \Delta_{\epsilon_R}$ significance goes to 4.0 σ , i.e. evidence for right-handed currents contributing to CKM non-unitarity

Scalar (f_0) and vector (f_+) form factors

$$f_0(t) = f_0(0) \left[1 + \lambda_0(t/m_{\pi^+}^2) \right]$$
$$f_+(t) = f_+(0) \left[1 + \lambda'_+(t/m_{\pi^+}^2) + \frac{\lambda''_+}{2}(t/m_{\pi^+}^2)^2 \right]$$

State of the art (PDG 2022 fit/average)

•
$$\lambda_0 = (1.76 \pm 0.25) \cdot 10^{-2}$$
 for $K_{\mu3}$:
ISTRA+ (0.54 M events), NA48/2 (2.3 M events)

•
$$\lambda'_{+} = (2.59 \pm 0.04) \cdot 10^{-2}$$
 for K_{e3} :
OKA (5.25 M events), NA48/2 (4.4 M events)

•
$$\lambda_{+}^{\prime\prime} = (0.186 \pm 0.021) \cdot 10^{-2}$$
 for K_{e3} :
OKA (5.25 M events), NA48/2 (4.4 M events)

NA62 will collect ~ 1 order of magnitude higher statistics for K_{l3} decays. Improving the poor precision of the form factors is fundamental for the determination of V_{us} , in particular for the experimental acceptance of the K_{l3} decays.

Francesco Brizioli (CERN)

K_{/3} radiative corrections

For V_{us} determination the K_{I3} decays include the radiative correction (IB component), that must be well known both for rates and form factors.

The $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay

Divergent decay amplitude for $E_{\gamma} \rightarrow 0$ and $\theta_{e,\gamma} \rightarrow 0$ due to IB component.

$$R_{j} = \frac{\mathcal{B}(Ke3\gamma^{j})}{\mathcal{B}(Ke3)} = \frac{\mathcal{B}(K^{+} \to \pi^{0}e^{+}\nu\gamma \mid E_{\gamma}^{j}, \theta_{e,\gamma}^{j})}{\mathcal{B}(K^{+} \to \pi^{0}e^{+}\nu(\gamma))}$$

Francesco Brizioli (CERN)

The Ke3 γ selected sample [PoS(EPS-HEP2021)553]

	E_γ cut	$ heta_{e,\gamma}$ cut	
R_1	$E_{\gamma} > 10~MeV$	$ heta_{e,\gamma} > 10^\circ$	
R_2	$E_{\gamma} > 30 \; MeV$	$ heta_{e,\gamma} > 20^\circ$	
R_3	$E_\gamma > 10~MeV$	$0.6 < \cos heta_{e,\gamma} < 0.9$	

Selected signal events:

- 130 K in R₁
- 54 K in R₂
- 39 K in R₃

Background contamination:

- $B/S(R_1) \simeq 0.5\%$
- $B/S(R_2) \simeq 0.6\%$
- $B/S(R_3) \simeq 0.3\%$

NA62 preliminary R_j measurements [PoS(EPS-HEP2021)553]

	O(p ⁶) ChPT	ISTRA+	OKA	NA62 preliminary
$R_1 (\times 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.684 \pm 0.005 \pm 0.010$
$R_2 (\times 10^2)$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.599 \pm 0.003 \pm 0.005$
$R_3 (\times 10^2)$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.523 \pm 0.003 \pm 0.003$

Uncertainty source	$\delta R_1/R_1$	$\delta R_2/R_2$	$\delta R_3/R_3$
Statistical	0.3%	0.5%	0.6%
Acceptances from MC	0.2%	0.4%	0.4%
Background estimation	0.1%	0.2%	0.1%
LKr response modeling	0.5%	0.6%	0.5%
Theoretical model	0.1%	0.5%	0.1%
Total systematic	0.6%	0.9%	0.6%
Total stat+syst	0.7%	1.0%	0.8%

- Achieved precision on R_j measurements equal/better than 1% relative
- State of the art improved by a factor between 2.0 and 3.6 in terms of relative precision
- Relative discrepancy with theory of 6-7% in all three measurements
- NA62 result for R_2 is half way between the two latest theoretical predictions [Kubis et al., EPJ C 50, 557] and [Khriplovich et al., PAN 74, 1214]

Francesco Brizioli (CERN)

$$R_A^{K_{\mu 2}}$$
 and $R_A^{K_{\mu 3}}$ @ NA62

Ratios related to V_{us}/V_{ud}

$$R_{A}^{K_{\mu2}} = \frac{\Gamma(K \to \mu\nu)}{\Gamma(\pi \to \mu\nu)}$$
$$R_{A}^{K_{\mu3}} = \frac{\Gamma(K^{+} \to \pi^{0}\mu^{+}\nu)}{\Gamma(\pi \to \mu\nu)}$$

NA62 analysis strategy

- mimimum bias trigger
- $\pi^+ \to \mu^+ \nu$ process reconstructed from $K^+ \to \pi^+ \pi^0$, tagging the π^0
- Cancellation of several systematic uncertainties
- Analysis ongoing on 2017 and 2018 data
- Expected statistical uncertainty < 1%
- Expected systematic uncertainty O(0.1%)
- External uncertainty: knowledge of ${\cal B}(K^+ o \pi^+ \pi^0)$: 0.4%

- The CKM unitarity condition represents a strong tool to test our comprehension of the Weak Interaction in the Standard Model.
- There are interesting hints of possible deviation from the unitarity condition, in particular with the first row of the CKM matrix $(V_{ud} \text{ and } V_{us})$.
- Kaon physics is the best environment to improve the precision of those measurements.
- The NA62 experiment is collecting the world largest statistics of K⁺ decay and can give a fundamental contribution in that context.

SPARES

Francesco Brizioli (CERN)

First-row CKM @ NA62

INFN-LNF, November 10, 2022 1/6

The CKM unitarity triangle

 $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

The CKM unitarity triangle fit [PDG 2022]

Form factors measurements from NA48/2 paper [JHEP10(2018)150]

Francesco Brizioli (CERN)

First-row CKM @ NA62

INFN-LNF, November 10, 2022 4 / 6

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay: T-asymmetry

State of the art:

•
$$|A_{\xi}^{SM \ and \ beyond}| < 10^{-4}$$

• $A_{\xi}^{ISTRA+}(R_3) = (1.5 \pm 2.1) \times 10^{-2}$

• No measurements provided for R_1 and R_2

NA62 preliminary A_{ξ} measurements [PoS(EPS-HEP2021)553]

- R_3 T-asymmetry precision improved by a factor greater than 3: $A_{\varepsilon}^{ISTRA+}(R_3) = (1.5 \pm 2.1) \times 10^{-2}$
- First measurements ever performed for R_1 and R_2 T-asymmetry