Time-dependent CPV and hadronic *B* decays at Belle II

Niharika Rout (On behalf of the Belle II collaboration)

Workshop on status and perspective of physics at high intensity, Frascati 10th November, 2022

The Belle II detector

- Higher beam background
- Higher trigger rate
- New tracking system and improved vertexing capability
- New particle identification systems
- Better time resolution at calorimeter
- Unique capability to reconstruct final states with multiple neutrinos and $\pi^0/$ photons

So far 424 fb⁻¹ of data collected, today's results are based on 190 fb-1 of $\Upsilon(4S)$ data

K_L and μ Detector:

Resistive Plate Chambers (barrel outer layers) Scintillator + WLSF + SiPM's

(end-caps , inner 2 barrel layers)

positrons (4 GeV)

Particle Identification:

Time-of-Propagation Counter (TOP) (barrel) Proximity focusing Aerogel RICH (ARICH) (fwd) dE/dx in CDC (centre)

Central Drift Chamber:

smaller cell size, longer lever arm,

Today's talk

- Time dependent measurements
 - B^o lifetime and mixing
 - $-\phi_1/\beta$
 - CPV in $B^0 \rightarrow K^0_S K^0_S K^0_S$
- Charmless B decays
 - $K\pi$ puzzle: $B \rightarrow K_S^0 \pi^0, K^+ \pi^0$
 - $-\phi_2/\alpha: B \to \pi^0 \pi^0, \rho \rho$
- ϕ_3/γ : combined Belle + Belle II analysis

The primary goal of Belle II is to probe non-SM physics as well as improve existing precision measurements on CKM Unitarity triangle by over constraining it.

TDCPV measurements

Decay rate of B^0 meson to CP eigenstate:

$$\mathcal{P}(\Delta t, q) = rac{e^{-|\Delta t|/ au_B^0}}{4 au_B^0} \left[1 + q \left(\mathcal{A}_{CF}
ight)
ight]$$

 $<\Delta Z > = 130 \ \mu m$ at Belle II

- B meson flavour tagging

The Flavour Tagger

- Crucial to determine the quark-flavour content of B-tag
- Multivariate algorithm to infer B-tag flavour from flavour-specific decays. Use information from particles kinematics, track-hit, PID variables etc

[Eur. Phys. J. C 82, 283(2022)]

- Effective tagging efficiency: $(30.0 \pm 1.2 \pm 0.4)\%$
- Comparable to best results from Belle and BaBar

B⁰ lifetime and mixing frequency

- Goal: validate the Δt resolution function as a key step towards the time-dependent CPV analysis
- Use about 40K $B^0 \rightarrow D^{(*)} \pi^+/K^+$ decays
- Strategy: measure τ_R and Δm_d from the backgroundsubtracted distribution of Δt
 - Background subtracted with sWeights calculated from 2D fit of ΔE and CS output

Good agreement with the WA

 $\tau_{B^0} = 1.499 \pm 0.013$ (stat) ± 0.008 (syst) ps

 $\Delta m_d = 0.516 \pm 0.008$ (stat) ± 0.005 (syst) ps⁻¹

Not yet competitive with global best results (from LHCb), but systematic uncertainties already on par with best Belle/Babar results.

Measurement of $sin 2\phi_1$

- B^0 mixing phase $\phi_1 = \arg[-V_{cb}^*V_{cd}/\phi_1]$
 - **Tree decays**: further constrain possible non-SM physics in mixing
 - Penguin decays: probe non-SM in decay by comparison with tree measurements

$$(V_{td}^*V_{tb})]$$
 from:

 $K_{\rm S}^0$

$\sin 2\phi_1$ from $B^0 \rightarrow J/\psi K_c^0$

- Tree dominated $b \rightarrow c\bar{c}s$ golden mode; theoretically and experimentally clean
- Time resolution and flavour-tagger calibrated with $B^0 \rightarrow D^{(*)} \pi^+ / K^+$ decays and validated in control sample $B \rightarrow J/\psi K$
- Results:

 $S_{CP} = 0.720 \pm 0.062$ (stat.) ± 0.016 (syst.) A_{CP} = 0.094 ± 0.044 (stat.) ^{+0.042} -0.017 (syst.)

• Dominant systematics:

• Size of the control sample: S_{CP}

• Tag-side interference and charge-asymmetry: A_{CP}

$CPV in B^0 \rightarrow K^0_S K^0_S K^0_S$

- $b \rightarrow s$ transition mediated by penguin loop: potentially sensitive to new physics
- Challenge: B vertexing as there is no prompt track; only $K_{\rm S}^0 \to \pi^+ \pi^-$ tracks are extrapolated back
- Signal extraction fit with 3 variables: $\Delta E, M_{K_c^0 K_c^0}$ and CS output
- Control sample: $B^+ \to K^+ K^0_{\varsigma} K^0_{\varsigma}$

S_{CP} = -1.86 ^{+0.91} -0.46</sub> (stat.) ± 0.09 (syst.) $A_{CP} = -0.22^{+0.30}_{-0.27}$ (stat.) ± 0.04 (syst.)

[arXiv:2209.09547]

Towards Belle II $I_{K\pi}$

- $K\pi$ puzzle: unexpected difference of A_{CP} in isospin related decays $B^0 \to K\pi, B^+ \to K^+\pi^0$
- Propose to examine the anomaly through a sum-rule:

$$I_{K\pi} = A_{CP}^{K^{+}\pi^{-}} + A_{CP}^{K^{0}\pi^{+}} \frac{\mathscr{B}(K^{0}\pi^{+})}{\mathscr{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2A_{CP}^{K^{+}\pi^{0}} \frac{\mathscr{B}(K^{+}\pi^{0})}{\mathscr{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2A_{CP}^{K^{0}\pi^{0}} \frac{\mathscr{B}(K^{0}\pi^{0})}{\mathscr{B}(K^{+}\pi^{-})} \approx 0$$

- Stringent null-test of SM, sensitive to the presence of non-SM dynamics
- Belle II is unique to most of the final states involved
- $I_{K\pi}$ sensitivity limited by the large uncertainty on $A_{CP} (B \to K^0 \pi^0)$

@Belle II:

$$B^0 \to K_S^0 \pi^0$$
 [arXiv:2206.07453]
 $B^+ \to K^+ \pi^0$ [arXiv:2209.05154]
 $B \to K^+ \pi^-, K_S \pi^+$ [arXiv:2106.0376]

and IP constraint

Strategy:

Perform 4D fit (ΔE , $M_{\rm bc}$, Δt , and CS). Use $B^0 \rightarrow J/\psi K_S^0$ to calibrate Δt shapes. Constrain $\tau_{B_{sig}}$, Δm_d , and S_{CP} from WA.

$$\mathscr{B}(B^0 \to K^0 \pi^0) = [11.0]$$

 $A_{CP}(B^0 \to K^0 \pi^0) = -0.4$

 $\pm 1.2(\text{stat}) \pm 1.0(\text{syst})] \times 10^{-6}$

11

 $.41^{+0.30}_{-0.32}$ (stat) ± 0.09(syst)

Towards measurement of ϕ_2/α

Least known angle of the UT, limiting the global test of the CKM unitarity

- Penguin pollution complicates extraction
- Isospin relations to disentangle tree and penguin contributions
- Use isospin symmetry to get rid of $\Delta \phi_2$ combining BR and A_{CP} measurements from $B \rightarrow \pi\pi$ and $B \rightarrow \rho\rho$ decays
- Belle II can access all isospin-related decays

$$\phi_2[^{\circ}] = 85.2^{+4.8}_{-4.3}$$

[HFLAV]

on of
$$\phi_2^{eff} = \phi_2 + \Delta \phi_2$$

- Most challenging final state, very difficult for LHCb and unique for Belle II
- Multivariate algorithm is used to reject fake photons and increase purity
- Control channel: $B \to D(K\pi\pi^0)\pi^0$
- Using flavour tagger to obtain direct CP asymmetry

$$\mathscr{B}(B^0 \to \pi^0 \pi^0) = (1.36 \pm 0.26 \text{ (stat.)} \pm 0.$$

 $\mathscr{A}_{cp} = +0.14 \pm 0.46 \text{ (stat.)} \pm 0.07 \text{ (syst.)}$

Results are competitive with Belle with just 1/4th of data set size

- Broad resonance of the vector meson and a π^0 in the final state
- Measurement of longitudinal polarisation is necessary for CP analysis
- Angular analysis using helicity angles of ρ 's
- 6D fit to the variables: $2^*M(\pi\pi)$, $2^*helicity$ angles, ΔE and CS output
- $N_{\rm trans.} = 21^{+19}_{-17}$ $N_{\rm long.} = 235^{+24}_{-23}$ • Results:

$$\mathscr{B} = (2.67 \pm 0.28 \text{ (stat.)} \pm 0.28 \text{ (stat.)})$$

 $f_L = 0.956 \pm 0.035 \text{ (stat.)} \pm 0.033$

Measurement of BR limited by systematic uncertainty; largest contribution from the π^0 reconstruction efficiency.

- Similar analysis strategy as $B^+ \rightarrow \rho^+ \rho^0$
- Similar analysis strategy as $B' \rightarrow \rho' \rho^{\sim}$ 6D (ΔE , CS, 2*M($\pi\pi$), 2*cos(helicity angles)) template \overline{O} fit taking correlations into account
 - Fit distribution of helicity angles of π^+

 $\mathscr{A}_{CP} = -0.069 \pm 0.068 \text{ (stat.)} \pm 0.060 \text{ (syst.)}$ $\mathscr{B} = (23.2^{+2.2}_{-2.1} \text{ (stat.)} \pm 2.7 \text{ (syst.)}) \times 10^{-6}$ $f_L = 0.943^{+0.035}_{-0.033}$ (stat.) ± 0.027 (syst.)

Comparable with the WA values and the largest systematics comes from data-MC discrepancy

- The direct measurement of γ is a SM benchmark
- Very precise theoretical predictions [$\mathcal{O}(10^{-7})$]
- Testing direct vs indirect extrapolation can serve as an excellent probe for new physics
- Direct experimental measurements are statistically dominated

 $= r_B e^{i(\delta_B + \phi_3)}$

Current WA dominated by LHCb:

$$\gamma[^{\circ}] = 65.9 + 3.3 - 3.5$$
 HFLAV

Belle + Belle II combined analysis

r B ^K	0.129 ± 0.024 (stat.) \pm 0.001 (syst.) \pm 0.001
φ ₃ (°)	78.4 \pm 11.4 (stat.) \pm 0.5 (syst.) \pm 1.0

- This result is most precise to date from the *B*-factory experiments
- New inputs from BESIII on strong-phase has significant impact on systematic uncertainty
- Use of $B \rightarrow Dh$ decay mode to incorporate efficiency effects reduces the experimental systematic uncertainty

[JHEP 02 (2022) 063]

7 (ext. input) .002 (ext. input)) (ext. input)

Summary and Outlook

- Presented several results that showcase **Belle II rich program**
 - Based on 190/fb. Have twice the data on tape, a sample as large as that of BaBar but with an improved detector
- Exploiting Belle + Belle II combined analyses too

arXiv:2203.11349

	Observable	2022	Belle-II	Belle-II	Bel
		$\operatorname{Belle}(\operatorname{II}),$	$5~{ m ab}^{-1}$	$50~{ m ab}^{-1}$	250
		BaBar			
	$\sin 2eta/\phi_1$	0.03	0.012	0.005	0.0
	γ/ϕ_3 (Belle+BelleII)	11°	4.7°	1.5°	0.8°
	α/ϕ_2 (WA)	4°	2°	0.6°	0.3°

B-factory variables

Two key variables discriminate against background for fully reconstructed hadronic final states

Main backgrounds: $e^-e^+ \rightarrow q\bar{q}$ events (collimated jets, very different event shape as compared to $e^-e^+ \rightarrow B\bar{B}$ events) and also some misreconstructed $B\bar{B}$ events

- $\mathbf{B} \to \mathbf{K}^{\mathbf{0}}_{\mathbf{S}} \pi^{\mathbf{0}} \gamma$ is expected to have small/none mixing induced CPV in SM
 - $b \rightarrow s\gamma_R$ is helicity suppressed (m_s/m_b) wrt $b \rightarrow s\gamma_L$
 - $B^0 \to s \gamma_L \text{ vs } B^0 \to \bar{B}^0 \to s \gamma_L$
- First measurement of the BR
- Signal extraction: fit to ΔE

Yield: 121 ± 29

$$\mathcal{B}\left(B^0 \to K_S^0 \pi^0 \gamma\right) = (7.3 \pm 1.8 \,(\text{sta}))$$

- Compatible with the known value
- Full TDCPV analysis is ongoing

 $B^+ \rightarrow K^+(\pi^+)\pi^0$

 $K\pi$ puzzle: Unexpected large difference between $\mathcal{A}_{\mathbf{k}+\pi^{-}}^{\mathsf{CP}}$ and $\mathcal{A}_{\mathbf{k}+\pi^{0}}^{\mathsf{CP}}$. **Isospin sum rule** provides null test of standard model:

$$I_{K\pi} = \mathcal{A}_{K^+\pi^-}^{\mathsf{CP}} + \mathcal{A}_{K^0\pi^+}^{\mathsf{CP}} rac{\mathcal{B}_{K^0\pi^+}}{\mathcal{B}_{K^+\pi^-}} rac{ au_{B^0}}{ au_{B^+}} - 2\mathcal{A}_{K^+\pi^0}^{\mathsf{CP}} rac{\mathcal{B}_{K^+\pi^0}}{\mathcal{B}_{K^+\pi^-}} rac{ au_{B^+}}{ au_{B^+}}$$

Belle II is a unique place to measure all involved decays!

$$N(K^+\pi^0) = 887 \pm 43$$
, $N(\pi^+\pi^0) = 422 \pm 37$

 $\mathcal{A}_{\kappa^{+}\pi^{0}}^{CP} = 0.014 \pm 0.047 \text{ (stat.)} \pm 0.010 \text{ (syst.)}$ $\mathcal{B}_{K^+\pi^0} = (14.30 \pm 0.69 \text{ (stat.)} \pm 0.76 \text{ (syst.)}) \cdot 10^{-6}$ $\mathcal{A}^{\sf CP}_{\pi^+\pi^0} = -0.085 \pm 0.085$ (stat.) ± 0.019 (syst.) $\mathcal{B}_{\pi^+\pi^0} = (6.12 \pm 0.54 \text{ (stat.)} \pm 0.52 \text{ (syst.)}) \cdot 10^{-6}$

WA: $\mathcal{A}_{K^+\pi^0}^{\mathsf{CP}} = 0.037 \pm 0.021$, $\mathcal{B}_{K^+\pi^0} = (12.9 \pm 0.5) \cdot 10^{-6}$

B precision limited by systematic uncertainties associated to size of control samples.

[arXiv:2209.05154]

CPV in **B** \rightarrow **K**⁰_S π^0

- Dominant uncertainty comes from $A_{K^0\pi^0}$
- Fundamental role of Belle II in precision improvement

• For statistically limited $B \rightarrow VV$ decays, integrate over ϕ and fit helicity angles to extract f_L

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_{\rho_1} d \cos \theta_{\rho_2}} \propto f_L \cos^2 \theta_1 \cos^2 \theta_2 + (1 - f_L) \sin^2 \theta_1 \sin^2 \theta_2$$

