Status of NA62 precision measurements on Chiral Perturbation Theory and form factor parameters

Mariaelena D'Errico on behalf of NA62 collaboration

INFN LNF / 2022 -Nov 9th-11th

0

Outline

□ Brief introduction □ NA62 in general □ K⁺ → $\pi^+\mu^+\mu^-$ □ K⁺ → $\pi^+\gamma\gamma$ □ Summary

Introduction

- Chiral Perturbation Theory (ChPT) is a natural framework that embodies together an effective theory (satisfying the basic chiral symmetry of QCD) and a perturbative Feynman–Dyson expansion.
- It allows one to study the low-energy dynamics of QCD on the basis of the underlying chiral symmetry.
- Some precision measurements in NA62 are strongly related to ChPT and can validate it
- Form-factor ChPT parameters can be measured.

NA62 experiment [2017 JINST 12 P05025]

NA62 is a fixed-target experiment @ CERN SPS

Main goal: measure BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) with 10% precision using novel kaon-in-flight technique

Broader physics: Rare/forbidden kaon decays; searches for exotic particles (K decays and beam dump)

NA62 experiment- setup [2017 JINST 12 P05025]

NA62 experiment – main goal

See Renato Fiorenza contribution from yesterday!

Main goal : measurment of BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) with 10% precision using **novel kaon-in-flight** technique

FCNC loop process $C \rightarrow d$ coupling and highest CKM suppression

Very **rare** but theoretically very **clean**

Prediction: $BR_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ Measured: $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11}$ (20 events observed in 2016 – 2018 data)

See also F. Brizioli and M. Corvino talks this afternoon

$\mathrm{K^{+}} ightarrow \pi^{+} \mu^{+} \mu^{-}$

- Flavour-changing neutral current (decay group: $K^{\pm} \rightarrow \pi^{\pm} \ell^{+} \ell^{-}$).
- Dominant contributions mediated by virtual photon.
- Long-distance hadronic effects described by a vector interaction form factor.
- Comparison between Knee and Kn $\mu\mu$ is a test of Lepton Flavor Universality.

- Kinematic variable $z = m^2(\mu\mu)/m^2_K$
- Differential decay width function of the transition form factor W(z):

$$\frac{d\Gamma(z)}{dz} = \frac{d\Gamma_{3-body}(z)}{dz} + \frac{d\Gamma_{4-body}(z)}{dz} = g(z) \cdot |W(z)|^2 + \frac{d\Gamma_{4-body}(z)}{dz}$$

- ChPT parametrization at O(p⁶) of W(z) is considered:

* 3-body: $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ final state * 4-body: $K^+ \rightarrow \pi^+ \mu^+ \mu^- \gamma$ final state

$$W(z) = G_F m_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z)$$

where $W^{\pi\pi}(z)$ is a complex function describing the contribution from a two-pion loop and depends on additional real parameters taken from <u>G. D'Ambrosio et al, arXiv:2209.02143.</u>

► Normalization channel $K^+ \rightarrow \pi^+ \pi^- \pi^-$: very similar channel

- \rightarrow substantial overlap of the event selections
- \rightarrow first-order cancellation of most detector and trigger inefficiencies
- \rightarrow reduction of systematic uncertainties

> Trigger stream:

K3π collected using Multi-track (MT) trigger: L0:RICH,CHOD;downscaling factor $D_{MT} \approx 100$ L1: KTAG, Straw; no downscaling Kπμμ collected using Di-muon multi-track (2μMT) ≈ (MT + 2 muons in MUV3) trigger: L0:RICH,CHOD,MUV3;downscaling factor $D_{2μMT} \approx 2$ L1: KTAG, Straw; no downscaling

Total trigger efficiencies of both trigger streams are $\approx 90\%$

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \mu^{\scriptscriptstyle -}$

Common selection (Generic 3-track selection cuts):

- Three track vertex topology (STRAW)
- Timing cuts (CHOD, KTAG, RICH)
- Particle ID using MUV3 and LKr:
 - μ^{\pm} : in-time MUV3 signal, E/p < 0.2
 - π^+ : no in-time MUV3 signal, E/p < 0.9

Additional for Kπµµ

- ${\ensuremath{\circ}}$ Tracks identified as $\pi \ \mu \ \mu$
- Additional kinematic cuts to suppress $K3\pi$

Acceptance: $A_{\pi\mu\mu} \approx 8.7\%$

Additional for $K3\pi$

One positively charged track: ID as pion

• $|m(3\pi) - m_K| < 8 MeV/c^2$

Acceptance: $A_{3\pi} \approx 6.6\%$

- > Data sample collected in 2017 and 2018
- > Effective number of Kaons $N_{K} = 3.5 \times 10^{12}$ (measured from K3 π)
- > Number of observed $K^+ \rightarrow \pi^+ \mu^+ \mu^-$, N_{K\pi\mu\mu} = 27679

Performed measurements:

- Model independent branching fraction
- W(z) form factor
- a₊, b₊ ChPT parameters
- Forward-backward asymmetry

$$\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \mu^{\scriptscriptstyle -}$$

Data divided in 50 equipopulated bins in z:

$$\left(\frac{d\Gamma(z)}{dz}\right) = \frac{N_{\pi\mu\mu,i}}{A_{\pi\mu\mu,i}} \cdot \frac{1}{\Delta z_i} \cdot \frac{1}{N_K} \cdot \frac{\hbar}{\tau_K}$$

integrating over $z \to B_{\pi\mu\mu} = (9.15 \pm 0.06_{\text{stat}}) \times 10^{-8}$

 $\begin{array}{l} \Delta z_i \colon \text{Bin width} \\ N_{\pi\mu\mu,i} \colon \text{Number of signal events} \\ A_{\pi\mu\mu,i} \colon \text{Signal acceptance} \\ NK \colon \text{Effective number of kaon decays} \\ \tau_{\text{K}} \colon \text{mean } K \pm \text{ lifetime} \end{array}$

Form factor parameters a_+ and b_+ are determined by a χ^2 fit. Fits of d $\Gamma(z)/dz$ and $|W(z)|^2$ give identical results.

Negative solution (theoretically prefered): $\chi^2/ndf = 45.1/48 \text{ (p-value } = 0.59\text{)}$ $a_+ = -0.575 \pm 0.012_{stat}, b_+ = -0.722 \pm 0.040_{stat}, p(a_+, b_+) = -0.972.$ Positive solution: $\chi^2/ndf = 56.4/48 \text{ (p-value = 0.19)},$ $a_+ = 0.373 \pm 0.012_{stat}, b_+ = 2.017 \pm 0.040_{stat},$ $\rho(a_+, b_+) = -0.973.$

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \mu^{\scriptscriptstyle -}$

$$\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \mu^{\scriptscriptstyle -}$$

o Forward-backward asymmetry for $K_{\pi\mu\mu}$

$$A_{\rm FB} = \frac{N(\cos\theta_{K\mu} > 0) - N(\cos\theta_{K\mu} < 0)}{N(\cos\theta_{K\mu} > 0) + N(\cos\theta_{K\mu} < 0)}$$

 $\circ \theta_{K\pi}$ – angle between K^+ and μ^- in $\mu^+\mu^-$ rest frame

Measured value: $A_{FB} = (0.0 \pm 0.7_{stat}) \times 10^{-2}$ No significant dependence on z

Statistical precision reaching upper limit from theory [PRD 67 (2003) 074029], [PRD 69 (2004) 094030]

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} \mu^{\scriptscriptstyle -}$

Published paper:

The NA62 collab., Cortina Gil, E., Kleimenova, A. *et al., J. High Energ. Phys.* **2022**, 11 (2022). https://doi.org/10.1007/JHEP11(2022)011

 $\mathrm{K^{+}}
ightarrow \pi^{+} \gamma \gamma$

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$

• Crucial test of Chiral Perturbation Theory (ChPT)

q1, q2: photons 4-momenta, p: K 4-momentum, mK - kaon mass, $M(\gamma\gamma)$: di-photon mass

- The decay is described by z = M²($\gamma\gamma$)/ m_K^2 , y = p (q₁ q₂) / m_K^2
- In the ChPT framework (at leading order $O(p^4)$ and including $O(p^6)$ contributions) the decay rate and spectrum are determined by a single apriori unknown O(1) parameter \hat{c} :

$$\frac{\partial\Gamma}{\partial y\partial z}(\hat{c}, y, z) = \frac{m_K}{2^9\pi^3} \left[z^2 \left(|A(\hat{c}, y, z) + B(z)|^2 + |C(z)|^2 \right) + \left(y^2 - \frac{1}{4}\lambda(1, r_\pi^2, z) \right)^2 |B(z)|^2 \right]$$

Experimental goals:

- Measurement of \hat{c} parameter
- Corresponding mesurement of $BR(K^+ \rightarrow \pi^+ \gamma \gamma)$

$\mathrm{K}^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$

- Data used: 2017 2018 (Run1)
- Trigger streams: CONTROL + nonMuon
- Data observed: 4039

Selection:

- One good track in the Spectrometer
- K- π matching using beam tracker GTK for kaon to define K+ decay vertex
- Two good clusters in LKr
- Kinematic cuts on kaon decay daughters: total energy conservation, total transverse momentum, invariant mass of decay products should be consistent with kaon mass

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$

1) merging clusters 2) K 3π with 2 non reconstructed tracks

Common strategy \rightarrow use control regions enriched of bkg events (see spares for details) 17

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$

Final background estimated contributions:

z > 0.25	Number of events
$K + \rightarrow \pi + \pi^0 \gamma$	252 ± 6(stat.)±15(syst.)
K+→π ⁺ π ⁰ π ⁰	58±5(stat.)±3(syst.)
$K + \rightarrow \pi^+ \pi^+ \pi^-$	83±3(stat.)±2(syst.)
Total background	393±9(stat.)±16(syst.)
Data	4039
Data - background	3646±67

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$

Final measurements $\rightarrow \hat{c}$ fit procedure

- 1. Z distribution divided in bins;
- 2. Maximization of Likelihood function:

$$\ln \mathcal{L} = \sum_{i} (k_i \ln \lambda_i - \lambda_i - \ln(k_i!))$$

- k_i observed events in the i-th bin
- $\lambda_i = \lambda_i^{S}(\hat{c}) + \lambda_i^{B}$ expected events in the i-th bin

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$

Final results:

 $\hat{c} = 1.713 \pm 0.075$ stat.

BR(K+ $\rightarrow \pi_{+}\gamma\gamma$)=(9.73±0.17)×10⁻⁷

Summary&Conclusions

- Some precision measurements in NA62 are strongly related to ChPT;
- Some form-factors and their ChPT parametrization can be measured;
- $\circ \quad \text{Decay } K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \ \mu^{\scriptscriptstyle +} \ \mu^{\scriptscriptstyle -}:$
 - Form factor of the $K^{\pm} \rightarrow \pi^{\pm} \mathbf{Y}^*$ transition: W(z)
 - BR(K⁺ $\rightarrow \pi^+ \mu^+ \mu^-$), W(z) and its parameters a+ and b+ from ChPT at O(p⁶) measured
 - Precision increased by a factor of 3
 - Comparison with NA48/2 results on $K^+ \rightarrow \pi^+ e^+ e^-$ validates lepton universality
- $\circ \quad \text{Decay } K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \ \gamma \gamma \text{:}$
 - Measured ChPT parameter \hat{c} applying a maximum likelihood fit
 - $\hat{c} = 1.713 \pm 0.075 \pm 0.037 = 1.713 \pm 0.084$
 - B(K⁺ $\rightarrow \pi^+ \gamma \gamma$) = (9.73±0.17 stat. ±0.08 syst.)×10⁻⁷ = (9.73±0.19)×10⁻⁷ (corresponding to \hat{c})
 - Errors reduced by a factor of 3 with respect to previous best measurement from NA48/2+NA62-2007
- > Work is also ongoing in other relevant channels:
 - $\bullet\quad K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \ e^{\scriptscriptstyle +} \ e^{\scriptscriptstyle -}$
 - $\bullet \quad \mathsf{K}^{\scriptscriptstyle +} \to \ \ell^{\scriptscriptstyle +} \ \nu \ \gamma$
 - $\bullet\quad K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \; \pi^0 \; e^{\scriptscriptstyle +} \; e^{\scriptscriptstyle -}$
 - $K^+ \rightarrow \ell^+ \, \ell^+ \, \ell^-$

22

Thank you!

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$

1) merging clusters

- 1. Decay $K^+ \rightarrow \pi^+ \pi^0 \pi^0$
- 2. Select events with 1 track and 3 clusters
- 3. Check reconstructed cluster energy with expected E_{merged} to tag cluster as a merged cluster.

$$E_{2} = \frac{1}{2} \frac{M_{\pi^{0}}^{2}}{E_{1}(1 - \cos \theta_{1m})}$$

$$E_{3} = \frac{1}{2} \frac{M_{\pi^{0}}^{2}}{E_{4}(1 - \cos \theta_{4m})}$$

$$E_{merged} = E_{2} + E_{3}$$

 $\mathrm{K^{+}}
ightarrow \pi^{+} \gamma \gamma$

1) merging clusters

- Distribution of cluster size merged clusters / good clusters
- Control region (merged clusters) compared to $K^+ \rightarrow \pi^+ \pi^0$ (good clusters)

Cluster size = RMS_x

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$

\checkmark merging clusters 2) K3 π with 2 non reconstructed tracks

- Do not trust G4 pion energy deposit simulation in LKr
- Use $K^+ \rightarrow \pi^+ \pi^- \pi^-$ data to study pion energy deposit in LKr and implement it into NA62MC
- Relax kinematic cuts in the final selection to perform Data/MC comparison

Control regions Data/MC comparison

M.D'Errico

22

 $\mathrm{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$

Final background estimated contributions:

z > 0.25	Number of events
$K + \rightarrow \pi + \pi^0 \gamma$	252 ± 6(stat.)±15(syst.)
K+→π ⁺ π ⁰ π ⁰	58±5(stat.)±3(syst.)
$K + \rightarrow \pi^+ \pi^+ \pi^-$	83±3(stat.)±2(syst.)
Total background	393±9(stat.)±2(syst.)
Data	4039
Data - background	3646±67

