# Workshop on status and perspectives of physics at high intensity

# Status and prospects for hadron spectroscopy at Belle II

**Bianca SCAVINO** on behalf of the Belle II Collaboration

Johannes Gutenberg University of Mainz

bscavino@uni-mainz.de



JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ



## Spectroscopy: non-perturbative QCD regime

> Interplay of experimental observations and semi-phenomenological effective models needed



### Theory

- > No direct calculations
- Rely on models approximating QCD
- > Huge number of theoretical predictions



## Experiment

- Perfect ground to test different theoretical models.
- Often reveals expected features,
  - new knowledge feed back to theory

## QCD bound states (up to 11 GeV)



Image credit: U. Tamponi



- "Multiplayer game", where each of the players
- has its own strengths and weaknesses

## QCD bound states (up to 11 GeV)





"Multiplayer ga has its own st



- "Multiplayer game", where each of the players
- has its own strengths and weaknesses

# Quarkonium(-like) spectroscopy, experienced players



Bianca Scavino



# REST

#### LHCb discovers three new exotic particles

The collaboration has observed a new kind of "pentaguark" and the first-ever pair of "tetraguarks"

News | Physics | 05 July, 2022

#### Long-lived exotic particle discovered

LHCb discovers first "open-charm" tetraquark

Discovery of a new exotic hadron containing two charm quarks and an up and a down antiquark

News | Physics | 29 July, 2021

at CERN's Large Hadron Collider

News | Physics | 21 August, 2020



KK and KK and KK and Americ Append

Observation of a charged scalar a0(1817)\* in Charmed-strange meson Ds decay

First evidence for the first neutral open-strange hidden-charm tetraquark state The BESIII Collaboration recently reported the evidence of a new exotic multi-quark state, namely Zcs(3985)0. It is the neutral partner of the charged tetraquark Zcs(3985)+ observed in 2021 at BESIII. This is the first candidate of the neutral hidden-charm tetraquark with non-zero strangeness, which marks a new milestone in exploration of the genuine properties of the family of the exotic multi-quark hadrons. The paper has been



#### Observation of resonance structures in $e + e - \pi + \pi - \psi 2(3823)$

published in Physical Review Letters [Phy. Rev. Lett. 129 (2022) 112003].

The BESIII experiment recently reported an observation of resonance structures in the e+ e-  $\rightarrow \pi$ +  $\pi$ -  $\psi$ 2(3823) process, and also achieved the most precise mass measurement of theu/2(3823) state. These results have been published in Physical Review Letters [Phys. Rev. Lett. 129, 102003 (2022)].

#### LHCb discovers a new type of tetraquark at CERN

The LHCb collaboration has observed an exotic particle made up of four charm quarks for the first time

News | Physics | 01 July, 2020

## -A- Data BBBB Ratignand

#### Observation of the X(2600) state

The BESIII Collaboration recently reported the observation of a new state, X(2600), using 10 billion Jpsi decay events. It was published online in the Journal of Physical Review Letter on July 19, 2022 [Phys. Rev. Lett. 129 (2022) 042001].



The particle, which has been called X(2900), was detected by analysing all the data LHCb has recorded so far from collisions



#### Observation of an Isoscalar Resonance with Exotic J^PC=1^(-+) Quantum Numbers in J/ψ - γηη'

The BESIII collaboration reported the observation of an isoscalar resonance with exotic JPC=1-+ quantum numbers. This research is published in Physical Review Letters [Phys. Rev. Lett. 129, 192002 (2022)], accompanied by a detailed companion paper in Physical Review D [Phys. Rev. D 106, 072012 (2022)]. This is an observation of a new category of hadronic matter, which is an important step forward in low energy QCD.

The BESIII Collaboration recently reported the observation of an a0-like state with mass of 1.817 GeV/c2 in DS decays with the data sets collected at the center-of-mass energy region between 4.178 GeV and 4.226 GeV. The paper has been published online in Physical Review Letter. [Phys. Rev. Lett. 129, 182001 (2022) ].

# Quarkonium(-like) spectroscopy, experienced players



Bianca Scavino



# BESI

#### LHCb discovers three new exotic particles

The collaboration has observed a new kind of "pentaguark" and the first-ever pair of "tetraguarks"

News | Physics | 05 July, 2022

#### Long-lived exotic particle discovered

Discovery of a new exotic hadron containing two charm quarks and an up and a down antiquark

News | Physics | 29 July, 2021



Observation of an Isoscalar Resonance with Exotic J^PC=1^(-+) Quantum Numbers in J/ψ → yηη' The BESIII collaboration reported the observation of an isoscalar resonance with exotic JPC=1-+ quantum numbers. This research is published in Physical Review Letters [Phys. Rev. Lett. 129, 192002 (2022)], accompanied by a detailed companion paper in Physical Review D [Phys. Rev. D 106, 072012 (2022)]. This is an observation of a new category of hadronic matter, which is an important step forward in low energy QCD.



Observation of a charged scalar a0(1817)\* in Charmed-strange meson Ds decay The BESIII Collaboration recently reported the observation of an a0-like state with mass of 1.817 GeV/c2 in DS decays with the data sets collected at the center-of-mass energy region between 4.178 GeV and 4.226 GeV. The paper has been published online in Physical Review Letter. [Phys. Rev. Lett. 129, 182001 (2022) ].



First evidence for the first neutral open-strange hidden-charm tetraquark state The BESIII Collaboration recently reported the evidence of a new exotic multi-quark state, namely Zcs(3985)0. It is the neutral partner of the charged tetraquark Zcs(3985)+ observed in 2021 at BESIII. This is the first

#### LHCb discovers first "open-charm" tetraquark The particle, which has been called X(2900), was detected by analysing all the data LHCb has recorded so far from collis at CERN's Large Hadron Collider

News | Physics | 21 August, 2020

#### LHCb discovers a new type of tetraquark at CERN

The LHCb collaboration has observed an exotic particle made up of four charm guarks for the first time

News | Physics | 01 July, 2020





# Quarkonium(-like) spectroscopy, characterization of our player

The game levels within our reach:





# Quarkonium(-like) spectroscopy, characterization of our player

The game levels within our reach:



Equipment:







# Quarkonium(-like) spectroscopy, characterization of our player

The game levels within our reach:



Equipment:



#### Bianca Scavino





Best skill: variety of production mechanisms accessible



#### **B** decays

- > Charmonium only
- $\rightarrow$  J<sup>PC</sup> = 0<sup>-+</sup>, 1<sup>--</sup>, 1<sup>++</sup>, ...

## **Initial State Radiation**



#### Bianca Scavino



#### **Double charmonium**

Seen: J=0, J<sup>PC</sup> = 1<sup>--</sup>
J<sup>PC</sup> = 0<sup>-+</sup>, 0<sup>++</sup>, 2<sup>++</sup>, ...

# Two y production

#### **Change CM energy**

- > All quantum numbers accessible
- Possibility of investigating the charged isospin partners (not many isospin triplets are complete)
- > Of great interest for X states in particular



- > All quantum numbers accessible
- Possibility of investigating the charged isospin partners (not many isospin triplets are complete)
- Of great interest for X states in particular



Bianca Scavino



Main challenges / competitors





## Belle II strengths

Reconstruction of neutrals

Possibility of inclusive studies via recoil

exploiting the knowledge of the initial state



- > J = 0, 2 accessible
- > Possibilities in the exotic baryons sector ( $\Theta^+$ , ..)
- Study the production of X(3872) in

2-photon  $\gamma^* \gamma$  processes (seen by Belle [1])







- > J = 0, 2 accessible
- > Possibilities in the exotic baryons sector ( $\Theta^+$ , ..)
- Study the production of X(3872) in

2-photon  $\gamma^* \gamma$  processes (seen by Belle [1])



Bianca Scavino



# Main challenges / competitors

## Belle II strengths

> Statistics (w/ full data sample)



- > Vectorial states 1-- accessible
- > Fully exploit charmonium region "for free"
- > Measurements of hadronic cross sections
- > Opportunity to confirm BESIII results



- > Vectorial states 1-- accessible
- > Fully exploit charmonium region "for free"
- > Measurements of hadronic cross sections
- > Opportunity to confirm BESIII results





# Main challenges / competitors

## Belle II strengths

- > Two strategies to exploit: (non-)tagged ISR γ
- > The region above ~5 GeV is not accessible to BESIII
- > Good capabilities of reconstructing  $\gamma$

(especially hard  $\gamma$ )

# Double charmonium production

### Rewards to be earned

- > Production of 4 quark  $c \rightarrow$  linked to one of the hot topics of the moment:  $T_{cccc}$
- > Search for vector  $T_{cccc}$ ,

double charm baryon production

Compare cross sections of double charmonium VS charmonium+DD VS double DD



# Double charmonium production

### Rewards to be earned

- > Production of 4 quark  $c \rightarrow$  linked to one of the hot topics of the moment:  $T_{cccc}$
- > Search for vector  $T_{cccc}$ ,

double charm baryon production

Compare cross sections of double charmonium
VS charmonium+DD VS double DD



## Main challenges / competitors

> Unique position!

## Belle II strengths

> Statistics



- > Investigate  $Z_b(10610)$  and  $Z_b(10650)$
- Investigate Y(10750)
- > (BSM) LFV, LFU searches
- > (BSM) Y(1S)  $\rightarrow$  invisible w/ dipion tag







PRL 117, 142001 (2016)

#### Bianca Scavino



University of Mainz

13

- > Investigate  $Z_b(10610)$  and  $Z_b(10650)$
- Investigate Y(10750)
- > (BSM) LFV, LFU searches
- $\rightarrow$  (BSM) Y(1S)  $\rightarrow$  invisible w/ dipion tag







PRL 117, 142001 (2016)

#### Bianca Scavino



## Main challenges / competitors

Unique position!

## Belle II strengths

- we can "sit" directly on interesting energies > and collect data there
- $\rightarrow$   $\eta_b$  and  $h_b$  in recoil



#### **Unique dataset at 10.75 GeV!**

Data collected at 4 energy points around 10.75 GeV (nov 2021)

Key to understand the nature of Y(10750) [1]



- Its nature generated considerable theoretical debate (conventional bottomonium, hybrid, tetra quark state)
- Predicted to decay into  $\omega \chi_{bJ}$  with BF of 10<sup>-3</sup> based on an interpretation ad admixture of the conventional 4S and 3D states



#### **Unique dataset at 10.75 GeV!**

- $e^+e^- \rightarrow \omega \chi_{bJ}$ 

  - > Study the energy dependence cross section of  $e^+e^- \rightarrow \omega \chi_{bJ}$  by combining with Belle data at  $\sqrt{s} = 10.867$



> Search for the X<sub>b</sub> using the unique data scan samples at 10.701, 10.745 and 10.805 GeV



Bianca Scavino

> Determine the Born cross section for e<sup>+</sup>e<sup>-</sup>  $\rightarrow \omega \chi_{bJ}$  using unique scan data samples at  $\sqrt{s} = 10.701$ , 10.745 and 10.805 GeV

X<sub>b</sub>: posited bottomonium counterpart of X(3872)





#### **Observation of e^+e^- \rightarrow \omega \chi\_{bJ}**



#### Bianca Scavino

# Two dimensional unbinned maximum likelihood fit to M( $\gamma$ Y(1S)) versus M ( $\pi^+ \pi^- \pi^0$ )

| Channel                 | √s [GeV] | N <sub>sig</sub>                           | σ <sub>B</sub> (up) [pb]            |
|-------------------------|----------|--------------------------------------------|-------------------------------------|
| e+e⁻ → ωχ <sub>b1</sub> | 10 745   | 68.9 <sup>+13.7</sup><br>-13.5             | 3.6 <sup>+0.7</sup> (stat)±0.4(sys) |
| e+e- → ωχ <sub>b2</sub> | 10.745   | 27.6 <sup>+11.6</sup><br>-10.0             | 2.8 <sup>+1.2</sup> (stat)±0.5(sys) |
| e+e⁻ → ωχ <sub>b1</sub> | 10.005   | 15.0 <sup>+6.8</sup><br>-6.2               | 1.6 @ 90% C.L.                      |
| e+e- → ωχ <sub>b2</sub> | 10.805   | <b>3.3</b> <sup>+5.3</sup> <sub>-3.8</sub> | 1.5 @ 90% C.L.                      |

# First experience points!

#### **Observation of Y(10753)** $\rightarrow \omega \chi_{bJ}$



| Γ <sub>ee</sub> B <sub>f</sub>           | Solution I                                            | Solutio                     |
|------------------------------------------|-------------------------------------------------------|-----------------------------|
| <mark>Υ(10753) → ωχ</mark> <sub>b1</sub> | (0.63 ±0.39 <sub>stat</sub> ±0.20 <sub>sys</sub> ) eV | (2.01 ±0.38 <sub>stat</sub> |
| Y(10753) → ωχ <sub>b2</sub>              | (0.53 ±0.46 <sub>stat</sub> ±0.15 <sub>sys</sub> ) eV | (1.32 ±0.44 <sub>stat</sub> |

#### Bianca Scavino

 $\sigma(e^+e^- \rightarrow \omega \chi_{b1,2})$  peak at Y(10753) No obvious peak at Y(10860)

Solution Combined with Belle measurement at  $\sqrt{s} = 10.867 [1]$ 

> Fit with a coherent sum of two-body phase space and a BW function

$$\mathrm{BW}(\sqrt{s}) = rac{\sqrt{12\pi\Gamma_{ee}\mathcal{B}_f\Gamma}}{s-M^2-iM\Gamma}\sqrt{rac{\Phi_2(\sqrt{s})}{\Phi_2(M)}},$$



#### Search for X<sub>b</sub>



No significant X<sub>b</sub> observed

Bianca Scavino

Peaks: reflections of  $e^+e^- \rightarrow \omega \chi_{bJ}$ 

Expected X<sub>b</sub>

> Simulated events with  $M(X_b)=10.45$  to 10.65 GeV

Upper limits at 90% C.L. on the production cross-section times BF,  $\sigma_{Xb}^{UL}$ 

| _ |                  |                          |                   |       |               |                             |          |                                               |
|---|------------------|--------------------------|-------------------|-------|---------------|-----------------------------|----------|-----------------------------------------------|
|   | $\sqrt{s}$ (GeV) | $M_{X_b}~({ m GeV}/c^2)$ | $N^{\mathrm{UL}}$ | ε     | $ 1 - \Pi ^2$ | $1 + \delta_{\mathrm{ISR}}$ | Syst (%) | $\sigma_{X_b}^{\mathrm{UL}} \; (\mathrm{pb})$ |
|   | 10.653           | 10.59                    | 10.0              | 0.154 | 0.931         | 0.72                        | 8.7      | 0.55                                          |
|   | 10.701           | 10.45                    | 8.1               | 0.166 | 0.931         | 0.76                        | 8.7      | 0.84                                          |
|   | 10.745           | 10.45                    | 8.1               | 0.164 | 0.931         | 0.78                        | 8.7      | 0.14                                          |
|   | 10.805           | 10.53                    | 10.7              | 0.165 | 0.932         | 0.81                        | 8.8      | 0.37                                          |
|   |                  |                          |                   |       |               |                             |          |                                               |

(Only least stringent

bound reported)





Multiplayer game of spectroscopy is a thriving environment that is constantly developing and is a perfect ground for new discoveries



Nore data (and more players) are important to pass the various levels of the game



Player "B2" just joined the game

It can make a significant impact in spectroscopy

Bianca Scavino



arXiv:2208.13189







Multiplayer game of spectroscopy is a thriving environment that is constantly developing and is a perfect ground for new discoveries





Player "B2" just joined the game

It can make a significant impact in spectroscopy

Bianca Scavino



## Nore data (and more players) are important to pass the various levels of the game

arXiv:2208.13189

Thank you for the attention and stay tuned!





# Additional material

Bianca Scavino



# Belle II, luminosity projection



# SuperKEKB





$$\mathcal{L} = \frac{\gamma_{\pm}}{2er_e} \left( 1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left( \frac{I_{\pm}\xi_{y\pm}}{\beta_y^*} \right) \left( \frac{R_{\mathcal{L}}}{R_{\xi_y}} \right)$$

Nucl. Instrum. Meth. A, vol 499, pp. 1-7, 2018

|                                                        | KEKB                          | SuperKEKB           |  |
|--------------------------------------------------------|-------------------------------|---------------------|--|
|                                                        | LER ( $e^+$ ) / HER ( $e^-$ ) | LER $(e^+)$ / HER ( |  |
| E [GeV]                                                | 3.5 / 8.0                     | 4.0 / 7.0           |  |
| $2\phi \;[\mathrm{mrad}]$                              | 22                            | 83                  |  |
| $\xi_x$                                                | 0.127 / 0.102                 | 0.0028 / 0.0012     |  |
| $\xi_y$                                                | 0.129 / 0.090                 | 0.088 / 0.081       |  |
| $eta_y^*$                                              | 5.9 / 5.9                     | 0.27 / 0.30         |  |
| I [A]                                                  | 1.64 / 1.19                   | 3.60 / 2.60         |  |
| $\sigma^*_x ~[\mu { m m}]$                             | 147 / 170                     | 10.1 / 10.7         |  |
| $\sigma_y^* \; [\mathrm{nm}]$                          | 940 / 940                     | 48 / 62             |  |
| $\mathcal{L} \ [10^{35} \ { m cm}^{-2} \ { m s}^{-1}]$ | 0.211                         | 8                   |  |
| $\int \mathcal{L} dt [ab^{-1}]$                        | 1                             | 50                  |  |



## Tracking detectors

- VerteX Detector (VXD)
  - PiXel Detector (PXD, 2 layers)



- Silicon Vertex Detector (SVD, 4 layers)
- Central Drift Chamber (CDC) >

### Particle identification subsystems

- > Time Of Propagation (TOP) counter (central region)
- Aerogel Ring-Imaging CHerenkov (ARICH, forward region)
- Outermost structures
  - Electromagnetic CaLorimeter (ECL)
  - Superconductive solenoid (1.5 T)
  - > K<sub>L</sub> and Muon detector (KLM)

#### Bianca Scavino



# Y(10753)



Bianca Scavino

• Belle: several ~1 fb<sup>-1</sup> scan points below  $\Upsilon(5S)$ • New structure  $\Upsilon(10753)$  observed in the  $\pi^+\pi^-\Upsilon(nS)$  transition<sup>[1]</sup>

|          |                                      |                                         | for an electronic and a second         |
|----------|--------------------------------------|-----------------------------------------|----------------------------------------|
|          | $\Upsilon(10860)$                    | $\Upsilon(11020)$                       | New structure                          |
| $V/c^2)$ | $10885.3 \pm 1.5  {}^{+2.2}_{-0.9}$  | $11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$ | $10752.7\pm5.9{}^{+0.7}_{-1.1}$        |
| eV)      | $36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$ | $23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$        | $35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$ |
|          |                                      |                                         |                                        |

• Interpreted as conventional bottomonium<sup>[2]</sup> or exotics state<sup>[3]</sup>. • Predicted to decay into  $\omega \chi_{bJ}$  with a BF of  $10^{-3}$  based on the mixing of conventional states 4S and 3D<sup>[4]</sup>.

[1]. JHEP 10, 220 (2019); [2]. PRD 105, 074007(2022); PRD 104,034036 (2021); EPJC 80,59 (2020) [3]. PRD 104,034019(2021); PRD 103,074507(2021); Chin. Phys. C 43, 123102 (2019); [4]. PRD 104,034036)2021.





# $X_h$ : bottomonium counterpart of X(3872)?

- •Two close peaks observed in the cross sections for  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$  by BESIII<sup>[1]</sup> and  $e^+e^- \rightarrow \pi^+\pi^- J/\psi$  $\pi^+\pi^-\Upsilon(nS)$  by Belle<sup>[2]</sup>, respectively. These peaks may indicate similar nature.
- $Y(4220) \rightarrow \gamma X(3872)^{[3]}$  and  $\omega \chi_{c0}^{[4]}$ , observed by BESIII.
- Evidence of  $\Upsilon(5S) \rightarrow \omega \chi_{b1,2}$  observed by Belle<sup>[5]</sup>, BESIII observed higher charmonium decays to  $\omega \chi_{c1,2}^{[6]}$ .
- So expect the  $\Upsilon(10753)$  state to decay into  $\gamma X_b$  with  $X_b \to \omega \Upsilon(1S)$ , as well as a potential resonance in the line shape of  $\sigma(e^+e^- \rightarrow \omega \chi_{b1,2})$ .



#### Bianca Scavino







# **Events** selection



## • Event selection

- 4 or 5 charged tracks. 0
- standard Belle II PID: 90%-95% efficiency with 1–5% misID. 0
- photons from  $\chi_{bJ}$  decays:  $E_{\gamma} > 50$  MeV 0
- $\pi^0$  candidates:  $M(\gamma\gamma) \in (0.105, 0.150)$  GeV/ $c^2$  with 90% efficiency. 0 Constrained kinematic fit to  $\pi^+\pi^-\pi^0\gamma e^+e^-/\mu^+\mu^-$ final. О
- Best candidate based on best fit quality. 0

Data driven corrections and systematics from control samples



## Mass distribution



Red box contains 95% of signals
Blue box defines one-dimensional projection ranges

# 10.750 dataset: ongoing analyses

# Other active ongoing analyses based on unique scan data:

| Channel                                     |                                         |
|---------------------------------------------|-----------------------------------------|
| $B\bar{B}$ decomposition                    | • Precise                               |
| $e^+e^- \rightarrow \omega \eta_b(1S)$      | <b>Y</b> (107                           |
| $e^+e^- \rightarrow \phi \eta_b(1S)$        | <ul> <li>Search</li> </ul>              |
| $e^+e^- \rightarrow \eta h_b(1P)$           | • Search                                |
| $e^+e^- \to \Upsilon(1S) + X$               |                                         |
| $e^+e^- \rightarrow \pi^+\pi^-Y_2(1D)$      | <ul> <li>Study t<br/>annihil</li> </ul> |
| $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$ |                                         |
| $e^+e^- \rightarrow \pi^+\pi^-h_b(nP)$      |                                         |

- e measurements of the mass and width of (53)
- for more decays of  $\Upsilon(10753)$
- for the the  $X_b$  state (the bottomonium erpart of X(3872))
- the  $\pi^+\pi^-/\omega/\eta/\phi$  transitions in the  $e^+e^-$  lations to test NRQCD