Status and perspectives of physics at high intensity INFN Frascati - 9 Nov 2022

...based in Milano Bicocca from June

Electroweak penguin decays at LHCb

Martino Borsato

EW Penguins

S

 Λ

EW penguins in b_b \rightarrow s transitions

- **Rare** (decay rate 10^{-7} to 10^{-7})
 - Forbidden at tree-level, proceeds through loop
 - Small CKM elements and GIM mechanism μ
 - Heavy NP could enter at the same order as SM

• Friendly (to experiments)

- No neutrinos involved (modulo $\nu\nu$ and $\tau\tau$)
- Several complementary channels
- Several complementary observables ~
- **Beautiful** (involves a *b* quark)
 - Small long-distance contributions ($m_b \gg \Lambda_{\rm QCD}$)
 - Can interpret with effective theory ($m_b \ll m_W$)

$$\begin{split} B &\to K^* \gamma, B \to K^{(*)} \ell^+ \ell^-, \\ B_s &\to \phi \gamma, B_s \to \phi \ell^+ \ell^- \\ \Lambda_b &\to p K^- \ell^+ \ell^-, \ldots \end{split}$$

Branching ratios, angular analyses, SM symmetry tests

(no time to cover LHCb contributions to Charm ($c \rightarrow u$) and Strange ($s \rightarrow d$) EW penguins)

The LHCb experiment

Excellent for EW penguins

- About $10^{12} b\bar{b}$ in the acceptance (integrated $\mathscr{L} = 9 \text{ fb}^{-1}$)
- Very displaced *b* vertices thanks to large forward boost $\beta \gamma \sim 20$
- Precise momentum and PID for charged tracks

The LHCb experiment

Excellent for EW penguins

- About $10^{12} b\bar{b}$ in the acceptance (integrated $\mathscr{L} = 9 \text{ fb}^{-1}$)
- Very displaced *b* vertices thanks to large forward boost $\beta \gamma \sim 20$
- Precise momentum and PID for charged tracks
- A bit more complicated for **photons**

The strength of LHCb

Weak effective theory

$b \rightarrow s\gamma$ at LHCb

 $b \rightarrow s\gamma \text{ in } B^0 \rightarrow K^* e^+ e^-$

 $b \rightarrow s\gamma \text{ in } B^0 \rightarrow K^*e^+e^-$

- ✓ Use $\gamma^* \rightarrow e^+e^-$ to measure photon polarisation!
- ✓ Get nice $K^-\pi^+e^-e^+$ final state
- Rate lower by $\alpha_{e.m.}$

$B^0 \rightarrow K^* e^+ e^-$ analysis

JHEP 12 (2020) 081

- Select $B^0 \to K^* \gamma^*$ with $\gamma^* \to e^+ e^$ requiring m(ee) < 0.5 GeV
 - About 500 events with LHCb dataset despite BR $\sim 2 \times 10^{-7}$

$B^0 \rightarrow K^* e^+ e^-$ analysis

<u>JHEP 12 (2020) 081</u>

- $B^0 \to K^+ \pi^- e^+ e^-$ described by 3 angles \to Full 3D angular analysis performed
- $_{\odot}$ Photon polarisation measured with ϕ
 - $\cos 2\phi$ modulation (+phase) would signal right-handed contribution

Martino Borsato - Heidelberg U.

$B^0 \rightarrow K^* e^+ e^-$ analysis

JHEP 12 (2020) 081

 $b \rightarrow s\ell^+\ell^-$ at LHCb

q^2 spectrum of $b \rightarrow s\ell\ell$

² spectrum of $b \rightarrow s\ell\ell$ \boldsymbol{Q}^{\prime}

 q^2 spectrum of $b \rightarrow s\ell\ell$

Martino Borsato - Heidelberg U.

BR of semileptonic $b \rightarrow s \mu \mu$

dB/dq^2 in exclusive $b \rightarrow s\mu\mu$ seems to undershoot SM

- Coherent undershooting, but predictions uncertainties are correlated
- Theory uncertainties ~20-30% (hadronic form factors)

Recent efforts to improve theoretical predictions

- Non-local corrections Gubernari et al, <u>JHEP 09 (2022)</u>
- Lattice QCD calculations HPQCD, <u>arXiv:2207.13371</u>

PRL 125(2020)011802

PRL 125(2020)011802

...many more observables not shown here + results of $B^+ \to K^{*+}\mu\mu$ and $B_s \to \phi\mu\mu$

PRL 125(2020)011802

- Simple fits of vector coupling C_9 reported with LHCb $b \rightarrow s\mu\mu$ angular analyses give consistent results
- Significantly better fit for $C_9 < C_9^{SM}$

- Several groups performed fits to $b \rightarrow s\mu\mu$ results (and more)
 - Varying all relevant couplings
 - Taking into account Theo. and exp. uncertainties and correlations

A growing number of global fits: Algueró et al: arXiv:2104.08921 Altmannshofer et al: arXiv:2103.13370 Ciuchini et al: arXiv:1903.09632 Geng et al arXiv:2103.12738 Hurth et al: arXiv:2104.10058 Kowalska et al: arXiv:1903.10932 and more...

- Theory uncertaities under scrutiny
 - Special attention to the role of nonlocal charmonium loops
 - Could cause a shift in SM C_9

LHCb still has a lot to say

- More data \rightarrow more sophisticated fits
 - Finer q^2 binning or unbinned
 - More floating parameters
 - Include CP-asymmetric observables
 - Parametrise non-local contributions and fit them to data (several methods)

Egede et al <u>JHEP 06 (2015) 084</u> Bobeth et al <u>EPJC 78 (2018) 6, 451</u> Gubernari et al <u>JHEP 02 (2021) 088</u> Chrzaszcz et al <u>JHEP 10 (2019) 236</u> Asatrian et al <u>JHEP 04 (2020) 012</u> Cornella et al <u>EPJC 80 (2020) 12, 1095</u>

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \begin{bmatrix} C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \end{bmatrix} \right\}$$

Hadronic form factors Non local ($c\bar{c}$)

Lepton Universality in $b \rightarrow s\ell\ell$

Testing LU in $b \rightarrow s\ell^+\ell^-$

- $b \rightarrow s\ell^+\ell^-$ is lepton universal in the SM \rightarrow use it to test if LU holds at high energy Hiller & Kruger arXiv:her while 10210⁺
- $b \rightarrow s\tau\tau$ not observed yet \rightarrow compare μ and μ^-
- Predictions are extremely precise
 - QCD uncertainty cancels to 10⁻⁴
 - Up to ~1% QED corrections

Bordone et al <u>arXiv:1605.07633</u>

 Main challenge at LHCb is e/µ differences in the detector response

$$\frac{b}{W} \xrightarrow{t} s ?$$

$$\frac{b}{W} \xrightarrow{t} \mu^{+} \mu^{+} \mu^{+} \mu^{+} \mu^{+} \mu^{+} \mu^{+} \mu^{-} \mu^$$

$$R_{H} = \frac{\int_{q_{\min}^{2}}^{q_{\max}} \frac{\mathrm{d}\mathscr{B}(B \to H\mu^{+}\mu^{-})}{\mathrm{d}q^{2}} \, \mathrm{d}q^{2}}{\int_{q_{\min}^{2}}^{q_{\max}} \frac{\mathrm{d}\mathscr{B}(B \to He^{+}e^{-})}{\mathrm{d}q^{2}} \, \mathrm{d}q^{2}} \stackrel{\mathrm{SM}}{\cong} 1$$

Electrons at LHCb

- Efficiency bottleneck at hardware trigger:
 - $p_{\rm T}(\mu^{\pm}) > 1.5 1.8 \text{ GeV}$
 - $E_{\rm T}(e^{\pm}) > 2.5 3.0 {\rm ~GeV}$
- Electron ID based on ECAL and tracking (harder and slower than μ ID)

$$\frac{\epsilon(B^+ \to K^+ \mu^+ \mu^-)}{\epsilon(B^+ \to K^+ e^+ e^-)} \simeq 3$$

- Measurement of $p(e^{\pm})$ affected by bremsstrahlung emission before magnet
- Bremsstrahlung photon recovery procedure has limited efficiency

Martino Borsato - Heidelberg U.

Int.J.Mod.Phys. A 30, 1530022 (2015)

Electrons at LHCb

$b \rightarrow s\ell^+\ell^-$ tests of LU

- LU in $b \rightarrow s\ell\ell$ tested in several hadronic systems (more coming)
- Huge effort ongoing on
 *R*ombined *R*_K and *R*_{K*} analysis
 Full dataset, more *q*² bins
 - Better precision and deeper
- R_X understanding of systematics
 - High priority to $B^0 \to K^*ee^{-10^{-4}}$ angular analysis (and others)
 - Shed light on K*µµ anomalies and their relation to LU tests
 - Main challenge is to control background angular shapes to the precision required

Summary

- Thanks to LHCb, EW penguins in
 b → *s* entered the precision era
 - Strong constraints on right-handed currents in $b \rightarrow s\gamma$
 - Sophisticated analyses of $b \rightarrow s\mu\mu$ transitions (BR+angular)
 - Precise LU tests in several $b \rightarrow s\ell\ell$ channels
- **Several anomalies** in $b \rightarrow s\ell\ell$ with a tantalising pattern
 - Upcoming run 1+2 analyses have the sensitivity to clarify the situation
- Upgraded LHCb being commissioned
 - 5 × the data rate and more precise trigger will translate in better precision
 - Opportunity to crosscheck anomalies with largely new detector

BACKUP

LHCb Upgrade I

More in <u>Giovanni Cavallero's talk</u>

- Installing upgrade for Runs 3 and 4 (<u>TDR</u>)
 - Readout electronics and several subdetectors upgraded
 - Can run at 5x higher luminosity
 - Real-time trigger with GPUs
- Opportunity to crosscheck anomalies with largely new detector
- *B*_(s) → µµ, LU tests and LFV searches will directly profit from the higher statistics (about factor 3 with Run 3 only)
- Online electron selection will profit from new real-time analysis capabilities

LHCb Upgrade II

- Framework TDR for Upgrade II currently in review by the LHCC
 - 10x luminosity of Upgrade I
 - Can clearly check for consistency and distinguish NP scenarios

$B^0 \to K^{*0} \mu^+ \mu^-$ angular analysis

PRL 125(2020)01 1802

 Can construct theoretically cleaner angular observables such as

$$P_5' = \frac{S_5}{F_L \sqrt{1 - F_L}}$$

where hadronic uncertainties cancel out at first order

- If NP contributes to C_9 and C_{10} expect large deviations in P'_5
- Observed local discrepancies:
 - 2.5σ for $q^2 = [4.0 6.0]$ GeV²
 - 2.9σ for $q^2 = [6.0 8.0]$ GeV²
- Easier stat interpretation using global EFT fits → see later

WC fits from angular analyses

Martino Borsato - Heidelberg U.

 $B_s^0 \to \phi \mu^+ \mu^- (F_{\rm L}, S_{3,4,7}) \ 8.4 {\rm fb}^{-1}$

LHCb

1

 $^{-1}$

 $\Delta \mathcal{R}e(C_9)$

0

flavio v2.2.0

2

$B^+ \to K^{*+} \mu^+ \mu^-$ angular analysis

- Recently analysed also isospin partner $B^+ \to K^{*+}(K_{\rm S}\pi^+)\mu^+\mu^-$
- Challenging reconstruction of long-lived $K_{\rm S} \rightarrow \pi^+ \pi^-$
- Signal yield of 737 ± 34 events split in 8 q^2 bins for angular fit
- Angular folding technique used to reduce dimensionality of the fit

folding 0:		folding 3:	
$\phi \rightarrow \phi + \pi$	for $\phi < 0$	$\cos \theta_L \rightarrow -\cos \theta_L$	for $\cos \theta_L < 0$
folding 1:		$\phi \ ightarrow \ \pi - \phi$	for $\phi > \frac{\pi}{2}$
$\phi \ ightarrow \ -\phi$	for $\phi < 0$	$\phi \rightarrow -\pi - \phi$	for $\phi < -\frac{\pi}{2}$
$\phi \ ightarrow \pi - \phi$	for $\cos \theta_L < 0$	folding 4:	2
$\cos \theta_L \rightarrow -\cos \theta_L$	for $\cos \theta_L < 0$	$\cos \theta_{I} \rightarrow -\cos \theta_{I}$	for $\cos \theta_L < 0$
folding 2:		$\phi \rightarrow \pi - \phi$	for $\phi > \frac{\pi}{2}$
$\phi \rightarrow -\phi$	for $\phi < 0$	$\phi \rightarrow -\pi - \phi$	for $\phi < -\frac{\pi}{2}$
$\cos \theta_L \rightarrow -\cos \theta_L$	tor $\cos \theta_L < 0$	$\cos \theta_K \rightarrow -\cos \theta_K$	for $\cos \theta_L < 0$

observable	moment	0	1	2	3	4
F_L	$\cos^2 \theta_K$	(√)	(\checkmark)	(√)	(\checkmark)	\checkmark
S_3	$\sin^2\theta_K \sin^2\theta_L \cos 2\phi$	(\checkmark)	(\checkmark)	(\checkmark)	(\checkmark)	\checkmark
S_4	$\sin 2\theta_K \sin 2\theta_L \cos \phi$		\checkmark			
S_5	$\sin 2\theta_K \sin \theta_L \cos \phi$			\checkmark		
A_{FB}	$\sin^2\theta_K\cos\theta_L$	\checkmark				
S_7	$\sin 2\theta_K \sin \theta_L \sin \phi$				\checkmark	
S_8	$\sin 2\theta_K \sin 2\theta_L \sin \phi$					\checkmark
S_9	$\sin^2\theta_K\sin^2\theta_L\sin 2\phi$	\checkmark				

$f^{*}\mu^{+}\mu^{-}$ angular analysis

$\begin{array}{c} \text{Dadmap} \\ B \xrightarrow{0} & K^* e^+ e^- \end{array} \\ \text{Angular analysis} \end{array}$

JHEP 12 (2020) 081

;**]**(

Folding ϕ angle to simplify the 3D angular expression: $\tilde{\phi} \equiv \begin{cases} \phi \text{ if } \phi \ge 0 \\ \phi + \pi \text{ if } \phi < 0 \end{cases}$

 $\frac{2}{\theta_K}\cos 2\theta_\ell$

38

Backgrounds in electrons

LHCb arXiv:2103.11769

Normalised distribution

Normalised distribution 10_{-1} Normalised distribution 10_{-3} 10_{-3} LHCb simulation $B^+ \rightarrow K^+ e^+ e^ B^+ \to \overline{D}^0 (\to K^+ e^- \ \overline{\nu}_e) \ e^+ \ \nu_e$ $B^+ \to \overline{D}^0 (\to K^+ e^- \ \overline{\nu}_e) \ \pi_{[\to e^-]}^ B^+ \rightarrow \overline{D}^0 (\rightarrow K^+ \pi_{[\rightarrow e^-]}) e^+ v_e$ 10^{-5} 1000 3000 4000 5000 2000 $m(K^+e^-)$ [MeV/ c^2] Candidates / (a. u.) LHCb simulation 10 $B \rightarrow K^* e^+ e^ B^+ \rightarrow K_1^{*+} e^+ e^ B^+ \rightarrow K_2^{*+} e^+ e^ B^+ \rightarrow K^+ J/\psi (\rightarrow e^+ e^-)$ 5 $B \rightarrow H_c (\rightarrow J/\psi X) K^+$ or $B \rightarrow J/\psi H_{-}(\rightarrow K^{+}Y)$ 4600 4800 5000 5200 5400 5600 $m(K^+e^+e^-)$ [MeV/ c^2] 39

• Particle ID and mass vetoes to suppress bkg e.g:

- cascade $B \to D \to K$ with $m(K^+e^-) > m_{D^0}$
- remove $B^+ \to K^+ \pi^+ \pi^-$ with tight electron ID
- Reduce combinatorial background with multivariate analysis (Boosted Decision Tree)
- Choose $m(K^+e^+e^-)$ window to suppress other backgrounds

R_K result

• Also measured electrons BR and compared to previous result on muons: $\frac{d\mathscr{B}(B^+ \to K^+ e^+ e^-)}{dq^2} = (28.6^{+1.5}_{-1.4}(\text{ stat }) \pm 1.4(\text{ syst })) \times 10^{-9} c^4/\text{GeV}^2$

→ Electrons BR closer to SM prediction (but both compatible)

LFU test in baryons

LHCb, JHEP 05 (2020) 040

- New test of LFU in $\Lambda_b \to pK^-\ell^+\ell^-$
 - Using Run 1 + 2016 dataset (4.7/fb)
- Similar physics as R_K and
 - Different final state and selection
 - Different backgrounds and systematic uncertainties
- Crosscheck using $\Lambda_b \to pK^-J/\psi$
- Measured phase space region:
 - $m(pK^{-}) > 2.6 \text{ GeV}$
 - $0.1 < q^2 < 6.0 \text{ GeV}^2$

$$R_{pK}|_{0.1 < q^2 < 6 \,\text{GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05$$

Weak effective theory

More details in <u>next two talks</u>

Found to be very SM like:

- C_7 determined to 5% precision with $B \rightarrow X_s \gamma$
- $C'_7/C_7 < 10\%$ from $B \to K^* \gamma$

$\mathcal{C}_7^{(\prime)}$	$\mathcal{C}_9^{(\prime)}$	$\mathcal{C}_{10}^{(\prime)}$	$\mathcal{C}^{(\prime)}_{\mathrm{S},\mathrm{P}}$	Experimental
		\checkmark	\checkmark	Radiative (e.g. $B \rightarrow X_{c}\gamma$) Semileptonic (e.g. $B \rightarrow K\ell\ell$) Leptonic (e.g. $B \rightarrow \mu\mu$)

Focus of today's talk

q^2 spectrum of $B^+ \to K^+ \mu^+ \mu^-$

LHCb, EPJ C77(2017)161

- Analysis of the q^2 spectrum
 - Modelling contributions from $K^+V(\mu^+\mu^-)$ with Breit-Wigners
 - Measure BR and phase differences
- Guidance for $b \rightarrow s\ell\ell$ measurements
 - Narrow J/ψ and $\psi(2S)$ are large and normally vetoed (also narrow ϕ)
 - Their interference with $b \rightarrow s\ell\ell$ (short distance) is small
 - Contributions from ω , ρ and broad charmonium above the $\psi(2S)$ are small and normally integrated
 - Region of $1.1 < q^2 < 6 \text{ GeV}^2$ is the cleanest

 $1.1 < q^2 < 6.0 \text{ GeV}^2$ theo. favoured region