Overview of radiative decays at Belle II

Henrikas Svidras on behalf of the Belle II henrikas.svidras@desy.de

Workshop of physics at high intensity November 9, 2022

Frascati, Italy

Rare radiative decays

From the lens of effective field-theory and Wilson Coefficients:

$$\underbrace{b_R} \underbrace{\stackrel{\searrow \gamma}{\underset{\bigotimes}} s_L} \times (C_7 + C_7^{\rm NP})$$

- Exclusive: specific meson-state originating from the $b \rightarrow s$
- Inclusive: all meson-states originating from the $b \rightarrow s$
 - \rightarrow Different theory uncertainties, e.g. no form-factor systematics
- Several SM extensions could contribute in $\mathcal{B}(B \to X_s \gamma)$
 - → Important ingredient in many global fits [JHEP11(2012)036]
- E_{γ} spectrum allows to determine m_b and other non-perturbative parameters
 - \rightarrow Important for $|V_{ub}|$ extraction from $B \rightarrow X_u l \bar{\nu}$ [PRD 78 (2008) 013002]

$B \rightarrow X_s \gamma$ schematic overview (1/3)

- Belle II detector already presented in the previous talk
- The collision produces two *B*-mesons at $\sqrt{s} \approx 10.58 \text{ GeV}$
- Label one of them as "signal" the other as "tag"

$B \rightarrow X_s \gamma$ schematic overview (2/3)

- Consider the "signal"-*B* meson decays (signal side)
- We are looking for $b \rightarrow s\gamma$ decays
- The s hadronizes, so any final state originating from s is X_s

$B \rightarrow X_s \gamma$ schematic overview (3/3)

- High-energy photon in the event is the signature of the decay
- Challenge: differentiate the signal-photon from background-photons

Exclusive: select a final state e.g. K^* , $K^+\pi^-$

Inclusive: apply no constraints to the X_s system

Use the photon, event-shape, tag-*B* information to suppress background processes
 If exclusive: also use X_s system tracks, neutral particles etc.

Henrikas Svidras (DESY)

Workshop of physics at high intensity

4 / 20

Content of the talk

The talk will present results from 2 studies and future discussion

• Measurement of photon energy spectrum of inclusive hadronic-tagged $B \rightarrow X_s \gamma$ decays

- arXiv:2210.10220
- Measurement of the branching fraction of $B \to K^* \gamma$
 - arXiv:2110.08219
- Radiative analyses prospects at Belle II

Thermal imaging Emperor Penguins in Terre Adélie, Antarctica

© M. Quatrevalet

Measurement of the photon-energy spectrum of inclusive $B \rightarrow X_s \gamma$

Inclusive measurements at B-factories

One may also use the kinematic information of the tag-B meson to constrain the signal side!

Tag side reconstruction

- Use the Full Event Interpretation: tagging algorithm of Belle II
- Semileptonic or hadronic reconstruction possible
- Hierarchical reconstruction starting at detector level objects
- Combines candidate B in $\mathcal{O}(10000)$ decay chains
- $\bullet\,$ Gradient-boosted decision trees (BDTs) assign a candidate probability score ${\cal P}_{\rm FEI}$ at every reconstruction step
- Relative increase in tagging efficiency by 30–50% compared to Belle algorithm

Hadronic-tagged measurement

- Analysis performed on 189 fb⁻¹ of Belle II data
- The tag-B is reconstructed decaying hadronically
 → Can determine charge, flavour, momentum of signal-B
- Results can be **expressed in the signal**-*B* **rest frame** → Optimal frame for theoretical comparisons

Reconstructed samples

- After reconstruction sample is dominated by photons from $e^+e^- \rightarrow q\overline{q}$ processes
- Most photons originate in energy-asymmetric $\pi^0 \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$ decays
- We select $E_{\gamma}^{B} > 1.4 \text{ GeV}$ (signal *B* rest frame)
- Only take the **highest energy photon in each event** \rightarrow 99+% true for $B \rightarrow X_s \gamma$

Background suppression

Signal-side background suppression

- (1) π^0 and η suppression:
 - \rightarrow use MVA to check for consistency with $\pi^0(\eta) \rightarrow \gamma \gamma$
 - \rightarrow combine the photon with lower-energy photon candidates
- 2 mis-ID photon suppression:
 - \rightarrow use MVA which combines photon calorimeter shower-shape variables

$e^+e^- \rightarrow q\overline{q}$ background suppression

- 3 Train a dedicated BDT
 - \rightarrow Carefully select all features that shown no correlation with E_{γ}^{B}
 - \rightarrow Take only features that are well-modelled in simulation
 - \rightarrow This is checked using 18 fb⁻¹ off-resonance data (below $\Upsilon(4S)$)

Selections optimised simultaneously based on figure-of-merit [Punzi, eConf C030908]

Tag-side fitting

- Tag-side observable fitting gives further background subtraction
- Remove misreconstructed tag-side events:

• Three components identified in our sample using simulation

 $\begin{array}{c} \mbox{Component} \\ \mbox{accept} \longrightarrow e^+e^- \rightarrow B\overline{B} \mbox{ well-reconstructed} \\ \mbox{discard} \longrightarrow e^+e^- \rightarrow B\overline{B} \mbox{ combinatorial} \\ \mbox{discard} \longrightarrow e^+e^- \rightarrow q\overline{q} \mbox{ events} \end{array}$

- 11 fitting intervals to extract E_{γ}^{B} spectrum:
 - \rightarrow 1.4 1.8 GeV : two 200 MeV wide (control-region for fit)
 - \rightarrow 1.8 2.7 $\,{\rm GeV}$: one 200 $\,{\rm MeV}$ and seven 100 $\,{\rm MeV}$ wide (signal region)
 - \rightarrow 2.7 GeV+ : one 'overflow' bin (control region for fit)
- We perform the fit on each data interval using the PDFs for each component

Unboxed fit results

- Each point corresponds to the 'peaking' yield in the data fit
- The filled histogram represents peaking yields in simulated background fit (with $B \rightarrow X_s \gamma$ removed)
- Clear evidence of signal at high- E_{γ}^{B}
- Data points filled histogram = $B \rightarrow X_s \gamma$ spectrum

Branching fraction extraction

- Statistical uncertainties are dominant
 - \rightarrow Straightforward bin-by-bin scaling is used for unfolding
 - \rightarrow Use a hybrid-model combining inclusive- $B \rightarrow X_s \gamma + B \rightarrow K^* \gamma$
- Then the partial branching fractions are:

* Signal model-uncertainty combines:

 $\mathcal{B}(B \to X_{\rm S} \gamma), \ \mathcal{B}(B \to {\rm K}^* \gamma)$ uncertainty

 $B \rightarrow X_s \gamma$ model shape uncertainties

Workshop of physics at high intensity

12/20

Integrated results

E^B_γ threshold [GeV]	$\mathcal{B}(B\to X_s\gamma) \ [10^{-4}]$
1.8	3.54 ± 0.78 (stat) ± 0.83 (syst)
2.0	3.06 ± 0.56 (stat) ± 0.47 (syst)
2.1	2.49 ± 0.46 (stat) ± 0.35 (syst)

Integrated branching fractions and absolute uncertainty:

- Agrees with world average: $3.49 \pm 0.19 \times 10^{-4}$
- Compare results to BaBar, **210** fb⁻¹: \rightarrow 3.66 ± 0.85(stat.) ± 0.60(syst.) [E_{γ}^{B} > 1.9 GeV]
 - → we achieve comparable systematic error (extrapolate between thresholds)
 - \rightarrow statistical error is smaller, despite less $\int \mathcal{L}$ (tagging, selection differences)

⇒ Belle II in a position to perform world-leading hadronic-tagged measurement

Biol. Lett.9:20121192

Measurement of the $B \to {{\it K}^{*}\gamma}$ branching fraction

$B \rightarrow K^* \gamma$ measurement at Belle 2

• Sharp resonance in E_{γ} near the 2-body decay kinematic limit ($E_{\gamma} \approx m_B/2$)

- \rightarrow Relatively high-branching fraction
- → Low-multiplicity final state
- Evidence for isospin violation at Belle (~ 700 fb⁻¹) [PhysRevLett.119.191802]
 → Belle 2 is in an excellent position to confirm this
- This presentation covers first Belle II $B \to K^* \gamma$ results on 63 fb⁻¹ \to measurement of branching fraction

Event selection

$B \rightarrow K^* \gamma$ signal extraction strategy

- Dominant $e^+e^- \rightarrow q\overline{q} \ (q = u, d, s, c)$ suppressed with a boosted-decision tree
- Kinematic variables for combinatorial background suppression:

- Significant background from B decays to other kaonic resonances peak in $M_{\rm bc}$
- ΔE more sensitive to mass hypothesis (separates the contributions) \rightarrow Extract signal by fitting ΔE in $M_{\rm bc} > 5.27$ GeV region

$B \rightarrow K^* \gamma$ signal extraction

$B \rightarrow K^* \gamma$ branching fraction

• Branching fraction calculation:

$$\mathcal{B}(B \to K^* \gamma) = \frac{n_{\rm sig}}{\varepsilon \times N_B \times f^{\pm/00}}$$

 $n_{\rm sig}$ – signal yield from the fit

 ε – signal efficiency

 N_B – number of B candidates

 $f^{\pm} \& f^{00}$ – rel. branching fractions of $\Upsilon(4S)$

Main systematic effects

- Misreconstructed signal (~ up to 7%)
- Fitting model (~ up to 7.5%)
- Background suppression (~ up to 6%)

Extracted yields and branching fractions:

Mode	Signal yield	Efficiency (%)	$B_{meas} [10^{-5}]$	\mathcal{B}_{PDG} [10 ⁻⁵]
$B^0 \rightarrow K^{*0}[K^+\pi^-]\gamma$	454 ± 28	15.22 ± 0.03	$4.5\pm0.3\pm0.2$	4.18 ± 0.25
$B^0 \rightarrow K^{*0} [K^0_S \pi^0] \gamma$	50 ± 10	1.73 ± 0.01	$4.4\pm0.9\pm0.6$	4.18 ± 0.25
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	169 ± 18	4.84 ± 0.02	$5.0\pm0.5\pm0.4$	3.92 ± 0.22
$B^+ \rightarrow K^{*+} [K^0_S \pi^+] \gamma$	160 ± 17	4.23 ± 0.02	$5.4\pm0.6\pm0.4$	3.92 ± 0.22

Results consistent with the PDG values at one (two) standard deviations for neutral (charged)

Upcoming iterations of this analysis will:

 \rightarrow measure CP & Isospin asymmetry

 \rightarrow systematically investigate the peaking background contributions

Outlook for radiative analyses at Belle II (1/2)

Inclusive hadronic-tagged $B \rightarrow X_s \gamma$

Untagged/lepton-tagged

- Belle II is the only ongoing experiment that can improve the untagged E_{γ} measurements
- To improve Belle/BaBar results the post-long-shutdown dataset will need to be awaited
- Semileptonic tagging may also provide new & unique experimental data

Hadronic-tagged

- Needs high-statistics to reach theory precision (5%~) [JHEP06(2020)175]
- The high-purity of E_{γ}^{B} spectrum is an **important cross-check** for alternative methods

Lower E^B_{γ} threshold	5	Statistical	Baseline (improved)		
	1 ab^{-1}	5 ab^{-1}	$10 \ {\rm ab}^{-1}$	$50 \ {\rm ab}^{-1}$	syst. uncertainty
1.4 GeV	10.7%	6.4%	4.7%	2.2%	10.3% (5.2%)
1.6 GeV	9.9%	6.1%	4.5%	2.1%	8.5% (4.2%)
1.8 GeV	9.3%	5.7%	4.2%	2.0%	6.5% (3.2%)
2.0 GeV	8.3%	5.1%	3.8%	1.7%	3.7% (1.8%)

Expected uncertainties arxiv 2207.06307

Outlook for radiative analyses at Belle II (2/2)

Exclusive $B \rightarrow X_s \gamma$ channels $B \rightarrow K^* \gamma$

Belle 2 results will remain sensitive to non-SM contributions up to the final data set size

Observable	1 ab^{-1}	5 ab^{-1}	10 ab^{-1}	50 ab^{-1}	Systematic uncertainty
$\Delta_{0+}(B \rightarrow K^* \gamma)$	1.3%	0.6%	0.4%	0.2%	1.2%
$A_{CP}(B^0 \rightarrow K^{*0}\gamma)$	1.4%	0.6%	0.5%	0.2%	0.2%
$A_{CP}(B^+ \rightarrow K^{*+}\gamma)$	1.9%	0.9%	0.6%	0.3%	0.2%
$\Delta A_{CP}(B \rightarrow K^* \gamma)$	2.4%	1.1%	0.7%	0.3%	0.3%

Expected uncertainties [arxiv 2207.06307]

Other exclusive channels

• $B \rightarrow K^+ \pi^+ \pi^- \gamma$ showed strong evidence of photon-polarisation at LHCb [PhysRevLett.112.161801]

 \rightarrow Belle II will be able to test this up to a precision of 1%

• $B \rightarrow \rho \gamma$ measurements of isospin asymmetry showed weak tensions at Belle [arXiv 0804.4770]

 \rightarrow Result limited in statistics, combination of Belle & Belle II can significantly increase the precision

Summary

- First radiative results from Belle II presented here
- Inclusive & exclusive techniques have an interesting outlook at Belle II
 ⇒B → X_sγ hadronic-tagged analysis matches the BaBar measurement
 ⇒B → K^{*}γ will provide important checks of CP & isospin asymmetries
- Belle II will pave the way for many tensions observed in the radiative sector in the upcoming years!

Thank you!

Additional slides

$B \rightarrow K^* \gamma$ systematic uncertainties

Source	$K^{*0}[K^+\pi^-]\gamma$	$K^{*0}[K^0_{\rm S}\pi^0]\gamma$	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K^0_{\rm S}\pi^+]\gamma$
No. of $B\overline{B}$ events	1.6	1.6	1.6	1.6
Photon selection	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$	$^{+0.2}_{-0.4}$
π^0/η veto	3.8	3.8	3.8	3.8
Pion identification	0.6	—		0.6
Kaon identification	0.8		0.8	
$K_{\rm S}^0$ reconstruction		2.4		2.4
π^0 selection		3.4	3.4	—
Tracking efficiency	1.4	1.4	0.7	1.4
MVA selection	2.0	6.0	2.0	4.0
MC statistics	0.2	0.5	0.3	0.3
PDF shape parameters	1.0	$^{+7.4}_{-5.4}$	$^{+2.4}_{-3.1}$	$^{+0.6}_{-1.4}$
Misreconstructed signal	1.5	$^{+6.8}_{-7.2}$	$^{+4.7}_{-5.9}$	$^{+2.5}_{-3.1}$
Total	5.3	$^{+13.2}_{-12.4}$	$^{+7.9}_{-8.9}$	$^{+7.0}_{-7.3}$

Motivation for asymmetry studies

- Theoretical prediction of branching fraction has a large dependance on form factors for exclusive channels
- Dependance suppressed in ratio observables, such as isospin/& CP assymetries:

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\overline{B} \to \overline{K}^* \gamma) + \Gamma(B \to K^* \gamma)} \qquad \qquad \Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0} \gamma) - \Gamma(B^+ \to K^{*+} \gamma)}{\Gamma(B^0 \to K^{*0} \gamma) + \Gamma(B^+ \to K^{*+} \gamma)}$$

$B \rightarrow X_s \gamma$ systematic uncertainties

E_{γ}^{B} [GeV]	$\frac{1}{\Gamma_B} \frac{d\Gamma_i}{dE_\gamma} (10^{-4})$	Statistical	Systematic	Fit procedure	Signal efficiency	Background modelling	Other
1.8 - 2.0	0.48	0.54	0.64	0.42	0.03	0.49	0.09
2.0 - 2.1	0.57	0.31	0.25	0.17	0.06	0.17	0.07
2.1 - 2.2	0.13	0.26	0.16	0.13	0.01	0.11	0.01
2.2 – 2.3	0.41	0.22	0.10	0.07	0.05	0.04	0.02
2.3 – 2.4	0.48	0.22	0.10	0.06	0.06	0.02	0.05
2.4 – 2.5	0.75	0.19	0.14	0.04	0.09	0.02	0.09
2.5 – 2.6	0.71	0.13	0.10	0.02	0.09	0.00	0.04