Purely leptonic rare decays at LHCb

Workshop on status and perspectives of physics at high intensity 9 - 11 November 2022 Laboratori Nazionali di Frascati

Flavio Archilli - Università di Roma "Tor Vergata"

(No) introduction

- I hope somebody gave gave a short theoretical introduction before me!
- In the SM, FCNC processes are forbidden at the first order

- New heavy Particles can significantly contribute and change the rates/ angular distribution/ asymmetries
- Purely-leptonic decays are typically
 - Rarer in the SM due to helicity suppression
 - Theoretically cleaner due to no hadrons in the final

a glimpse of the LHCb detector

Datasets and schedule

• LHCb already collected 9 fb⁻¹ during Run1+2

• Upgrade I is already here with an improved detector: 40MHz readout/software trigger and new tracking \rightarrow integrated luminosity expected $\sim 50 \, {\rm fb}^{-1}$

• Upgrade II will allow to collect 300 fb^{-1} (Run5) [CERN-LHCC-2021-012][CERN-LHCC-2018-027]

WE ARE HERE!

• $B_{(s)}^0 \to \mu^+ \mu^-$ is a golden channel for LHCb:

$$\mathscr{B} = \frac{G_F^2 \alpha^2}{64\pi^3} f_{B_s}^2 m_{B_s}^3 |V_{tb} V_{tq}|^2 \tau_{B_s} \sqrt{1 - \frac{4m_{\mu}^2}{m_{B_s}^2}} \left[(1 - \frac{4m_{\mu}^2}{m_{B_s}^2} \right]$$

• Branching fraction predicted processely in the SM: $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ Analysis strategy

- Blind analysis on Run1+Run2 data set (9 fb^{-1})
- Main background due to combinatorics of two μ 's.
- and topology

• Signal/Background separation obtained through $m_{\mu\mu}$ and BDT trained on two body kinematics

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ Analysis strategy

- Blind analysis on Run1+Run2 data set (9 fb^{-1})
- Main background due to combinatorics of two μ 's.
- and topology

[Phys. Rev. Lett. 128, (2022) 041801] [Phys. Rev. D105 (2022) 012010]

• Signal/Background separation obtained through $m_{\mu\mu}$ and BDT trained on two body kinematics

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ peaking background

30

25

20

15

5000

Candidates

Toy MC

5200

• The most sensitive region is polluted by both combinatorial background and exclusive channels $B_{(s)}^0 \to h^+ h^{\prime-}$ 35 LHCb @ 2016

Semileptonic decays

/ (40 MeV/c²) eventually with one hadron misidentified as muon:estimated with large samples of MC, and normalising to $B^{\pm} \rightarrow J/\psi K^{\pm}$

Combinatorial background

from $b\overline{b} \to \mu^+ \mu^- X$: an exponential shape is used, the normalisation is a free parameter of the invariant mass fit

 $L(\sqrt{s} = 13 \text{ TeV}) = 2.2 \text{ fb}^{-1}$ $B_{(s)}^{0} \rightarrow h^{+}h^{-}$ decays (h=K, π) 🔶 Data — Signal and background --- $B_s^0 \rightarrow \mu^+ \mu^$ both hadrons misidentified as $--- B^0 \rightarrow \mu^+ \mu^$ muons (prob \sim 2x10⁻⁵): this background peaks in the B^0 Comb. bkg. signal region; it is estimated ····· Semi. bkg. from not misidentified events, Peak. bkg. and using PID efficiencies from data 5403 5600 5800 6000 $\mathscr{B}(B \to hh') \sim 10^{-5}$ $m_{\mu^{+}\mu^{-}}$ [MeV/ c^{2}]

LHCb Results

- Simultaneous fits to the bins of multivariate response to determine B^0 and B_s^0 branching fractions
- Signal normalised to $B^+ \to J/\psi K^+$ and $B^0 \to K^+ \pi^-$
- $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46}_{-0.43} + 0.15) \times 10^{-9}$
- $\mathscr{B}(B^0 \to \mu^+ \mu^-) = (1.2^{+0.8}_{-0.7} \pm 0.1) \times 10^{-10}$ (3)

[Phys. Rev. Lett. 128, (2022) 041801]

[Phys. Rev. D105 (2022) 012010]

ponse to determine B^0 and B_s^0 branching fractions $K^+\pi^-$

$$(\mathscr{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10} \text{ at } 95 \% \text{ CL})$$

CMS results

• $\mathscr{B}(B^0 \to \mu^+ \mu^-) = (0.37^{+0.75}_{-0.67} + 0.08)_{10} \times 10^{-10} \quad (\mathscr{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10} \text{ at } 95 \% \text{ CL})$

LHCb impact on theory

- $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)$ is an important probe of supersymmetric extension of SM
- Current LHCb analysis performances: ~16% uncertainty on $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)$
- Combination with ATLAS and CMS will push $\Delta \mathscr{B}/\mathscr{B}$ below 7% which is the expected uncertainty at the end of Run4 for LHCb only
- Complementary to direct searches of MSSM with $\tau\tau$ resonances

Test of LFU with $B_{(s)}^0 \to e^+ e^-$ decays

- Helicity suppressed by $\mathcal{O}(10^{-4})$ relative to $B_{(s)}^0 \to \mu^+ \mu^-$
- $\mathscr{B}(B_s^0 \to e^+ e^-) = (8.35 \pm 0.39) \times 10^{-14}$
- $\mathscr{B}(B^0 \to e^+e^-) = (2.39 \pm 0.14) \times 10^{-15}$ M. Beneke et al. JHEP 10 (2019) 232
- NP effects could increase BFs by $\mathcal{O}(10^6)$
- Current analysis performed on Run1+2015+2016 data
- Signal extracted from UML fit on $m_{e^+e^-}$
 - $\mathscr{B}(B_s^0 \to e^+ e^-) < 11.2 \times 10^{-9} \text{ at } 95\% \text{ CL}$
 - $\mathscr{B}(B^0 \to e^+e^-) < 3.0 \times 10^{-9}$ at 95 % CL

Fleischer et al., JHEP 05 (2017) 156

Prospects

- $B_s^0 \rightarrow e^+e^-$ already probing possible LUV scenarios
- Potential backgrounds like $B_s^0 \rightarrow e^+ e^- \gamma$ might become relevant with larger statistics
- Electron reconstruction/PID unknown after UpgradeII
- Also $B_{(s)}^0 \to \tau^+ \tau^-$ even if far from SM expectations still powerful tool to constraint NP Leptoquark models

Phys. Rev. D 94, 115021 (2016)

- Run1: $\mathscr{B}(B_{(s)}^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} @95\% \text{ CL}$
- 300 fb-1: $\mathscr{B}(B_{(s)}^0 \to \tau^+ \tau^-) < 2.6 - 5 \times 10^{-4} @\,95 \% \,\mathrm{CL}$

Lepton flavour violations measurements

- Lepton Flavour Violation forbidden in the SM
- Observation of neutrino oscillation \rightarrow evidence of LFV in the neutral sector. However no observation of LFV in the charged sector so far

Crivellin, Mueller, Ota JHEP09(2017)040

$$B^0_{(s)} \to \tau^{\pm} \mu^{\mp}$$
 Phys. Rev. Lett. 123 (

- BF can be ~O(10⁻⁵) in some models with Z'/ leptoquarks [JHEP 11 (2016) 035]
- LHCb analysis with Run1 data (3 fb^{-1})
- Reconstruct $B_{(s)}^0 \to \tau^{\pm} \mu^{\mp}$ candidates using the 3-prong τ decays
- Events classified with multivariate operator and invariant mass (kinematically constrained)

Mode	Limit	90% CL	95%
$B_s^0 \to \tau^{\pm} \mu^{\mp}$	Observed	3.4×10^{-5}	$4.2 \times$
	Expected	3.9×10^{-5}	$4.7 \times$
$B^0 \to \tau^{\pm} \mu^{\mp}$	Observed	1.2×10^{-5}	$1.4 \times$
	Expected	$ 1.6 \times 10^{-5}$	$1.9 \times$

Bordone et al. JHEP10(2018)148 (2018)

• Already very effective in constraining BSM models such Pati-Salam extensions

Complementary to cLFV searches

$0.00 \ 0.02 \ 0.04 \ 0.06 \ 0.08 \ 0.10 \ 0.12$ $\mathcal{B}(\tau \rightarrow 3\mu) \times 10^8$

$B \rightarrow \ell \ell' \text{ prospects}$

LHCb		•	LHCb Upgra	ade I	•LH	$CbUpgradeII\longrightarrow$
Run1 - Run2		Run3		Run4	Run5	Run6
⊥ _{int} = 10 fb ⁻¹	LS2 Injector upgrades	£ = 2 x 10 ³³	LS3 HL-LHC - ATLAS/CMS Phase 2 upgrades		LS4 $\mathcal{L} = 1-2 \times 10^{34}$ —	LS5 →£ _{int} ~ 300 fb ⁻¹
2010 2018	2019 2020 2021	2022 2023 2024	2025 2026 2027	2028 2029 2030 2	2031 2032 2033 2034	2035 2036 2040

LHCb Run1 Upgrade I Upgrade II $\mathscr{B}(B^0 \to e^{\pm} \mu^{\mp})$ $< 2 \times 10^{-10}$ $< 1.3 \times 10^{-9}$ $< 9 \times 10^{-11}$ $\mathscr{B}(B_s^0 \to e^{\pm} \mu^{\mp})$ $< 8 \times 10^{-10}$ $< 3 \times 10^{-10}$ $< 6.3 \times 10^{-9}$ $< 1.4 \times 10^{-5}$ $< 3 \times 10^{-6}$ $\mathcal{B}(B^0 \to \tau^\pm \mu^\mp)$ projections @95% CL

CERN-LHCC-2018-027

$B_{(s)}^0 \to \mu^+ \mu^- \mu^+ \mu^-$

- $\mathscr{B}(B_{(s)}^0 \to \mu^+ \mu^- \mu^+ \mu^-) \sim 10^{-12(-10)}$ highly suppressed in SM
- Many SM extensions with significant enhancements of the BF, e.g. MSSM [Phys. Rev. D 85], axions [PRL 119 (2017) 031802] [JHEP 03 (2019) 008] [EPJC 79 (2019) 5]
- Using full Run 1-2 data set (9 fb⁻¹), search for non-resonant $B_{(s)}^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$, scalar-mediated $B_{(s)}^0 \rightarrow aa \ (m_a = 1 \text{ GeV})$ and $B_{(s)}^0 \rightarrow J/\psi(\rightarrow \mu^+ \mu^-)\mu^+\mu^-$
- No evidence, limits at 95% CL are:

$$\begin{aligned} \mathscr{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 8.6 \times 10^{-10} \\ \mathscr{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 1.8 \times 10^{-10} \\ \mathscr{B}(B_s^0 \to a(\mu^+ \mu^-)a(\mu^+ \mu^-)) < 5.8 \times 10^{-10} \\ \mathscr{B}(B^0 \to a(\mu^+ \mu^-)a(\mu^+ \mu^-)) < 2.3 \times 10^{-10} \\ \mathscr{B}(B_s^0 \to J/\psi(\mu^+ \mu^-)\mu^+ \mu^-) < 2.6 \times 10^{-9} \\ \mathscr{B}(B^0 \to J/\psi(\mu^+ \mu^-)\mu^+ \mu^-) < 1.0 \times 10^{-9} \end{aligned}$$

$D^0 \rightarrow \mu^+ \mu^-$

- Opportunity to study FCNC in the upper sector, effectively GIM suppressed and helicity suppressed.
- Two contributions:
 - Short distance extremely suppressed $\sim 10^{-18}$ [PRD 66 (2002) 014009]
 - Long distance with two-photons intermediate state [PRD 66 (2002) 014009]. Upper limit from $D^0 \rightarrow \gamma\gamma$ search $\mathscr{B}^{(\gamma\gamma)}(D^0 \rightarrow \mu^+\mu^-) < 2.3 \times 10^{-11} @ 90 \% \text{ CL}$
- Useful to constrain model of NP with extra particles (e.g. vector-like fermions [JHEP 10 (2015) 027])
- Previous upper limit from LHCb with 2011 data set (0.9 fb⁻¹) $\mathscr{B}(D^0 \to \mu^+ \mu^-) < 7.6 \times 10^{-9} @95\% \text{ CL}$

$\rightarrow \mu^{-}\mu$

- D^0 coming from $D^{*+} \rightarrow D^0 \pi^+ (\mathscr{B} \sim 68^{\circ})^{50}$ Normalisation = 1

 MeV/c^{2}

350

1800

250

200

150

50

1800

- Selection strategy chosen to minimise the Ξ BDT + PID
- Signal yield from a 2D unbinned ML fit by BDT cat. and 2 Run period
- Preliminary result: $\mathscr{B}(D^0 \to \mu^+ \mu^-) < 2$.
 - main systematics from normalisation mode trigger
- Expected for the Upgrade:
 - Upgrade I (50 fb⁻¹): $\mathscr{B}(D^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-10} @ 90 \% CL$
 - Upgrade II (300 fb⁻¹): $\mathscr{B}(D^0 \to \mu^+ \mu^-) < 1.3 \times 10^{-10} @ 90 \% CL$

Strange decays at LHCb

• LHC"b" optimised for b physics but large production of charm and strange quarks ($\mathcal{O}(10^{13}) K_S^0/\text{fb}^{-1}$ with decay vtx in VELO acceptance)

Tstations

track long track

downstream track

- $K_S^0 \to \mu^+ \mu^-$ highly suppressed in the SM
- with Run1 [PRL 125, 231801 (2020)]

$K^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^$ preliminar y

• Highly constrained by phase space, very low background. SM prediction [Eur. Phys. J. C 73 (2013) 2678]:

•
$$\mathscr{B}(K_{S(L)}^0 \to \mu^+ \mu^- \mu^+ \mu^-) \sim 10^{-14} (10^{-14})$$

• Dark photons models like $U(1)_d + S$ can enhance the SM branching fraction prediction up to two orders of magnitude. [arXiV:2201.07805]

)-13

$K^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

- Blind analysis on 2016-2018 data (5.1 fb^{-1})
- $K_{s}^{0} \rightarrow \pi^{+}\pi^{-}$ is used as normalisation mode
- Potential peaking background (e.g. $K^0 \rightarrow \pi + \pi^- e^+ e^-$) found negligible Candidates $/(5 \text{ MeV/c}^2)$
- Main background source: random combination of tracks from IP or inelastic collision in the material
 - BDT used to improve signal/bkg separation
- No evidence of signal
- Improvement of an order of magnitude is expected in the sensitivity thanks to the hardware-less trigger.

[LHCb-PAPER-2022-035]

0.5

450

Conclusions

- Purely-leptonic decays are sensitive probes for New Physics effects
- SM describes large majority of results with excellent precision
 - Complementary information to B anomalies in semileptonic decays
- Run 3 starting now allowing an unprecedented sensitivity for NP effects
 - Full software trigger, including higher efficiencies for leptons, especially electrons!
 - Good prospects for fully leptonic decays!
- Moreover, several updates with full Run 1 and 2 data sample in preparation

BACKUP!

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE.

Model independent description in effective field theory

$$\mathscr{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_i C_i(\mu) \mathcal{O}_i \qquad A$$

- Direct searches limited by beam energy
- Rare decays depends on coupling κ and measurement precision

LFU and consequences

- Lepton Flavour Universality (LFU): couplings with gauge bosons of all leptons are equal
- QCD uncertainties completely cancel in the ratio
- Cleaner observables can be used to probe NP effects
- Hints of deviation from LFU test consistent with $b \rightarrow s\mu\mu$ BF and angular analyses if NP only in μ
- Possible Lepton Flavour Violation (LFV) as possible consequence

Phys. Rev. Lett. 122 (2019) 191801

Upgrade and plans

- Preparing the upgrade for Run3 and Run4 during LS2
 - Full software trigger and new readout system, all detector at 40MHz (32 Tbps throughput)
 - Replace tracking detectors + PID + VELO, \mathcal{L}
 - Consolidate PID, tracking and ECAL during LS
- Phase-II upgrade during LS4:
 - New detector technologies, $\mathscr{L} = 1.5 \times 10^{34}$ cm

$$= 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$$

S3

$$n^{-2}s^{-1}$$

Analysis strategy

- 3fb⁻¹ of Run1 at 7 and 8 TeV and 6fb⁻¹ of Run2 at 13 TeV LHCb dataset used (almost doubling the previous dataset)
- Search in $m_{\mu\mu} \in [4.9, 6.0] \text{GeV}/c^2$
 - opportunity to search for untagged ISR $B \rightarrow \mu\mu\gamma$ decays
- Main background due to combinatorics of two μ 's.
- Signal/Background separation obtained through $m_{\mu\mu}$ and BDT trained on two body kinematics and topology

BDT calibration

- New BDT calibration procedure using simulated events:
 - kinematics + occupancy + PID + trigger corrected using data control channels
 - New procedure compared with previous calibration using $B \rightarrow hh'$ decays with larger uncertainties
 - Combinatorial background peaking at low BDT region

Background sources

- In addition to the main combinatorial background (exponential shape), other two categories populate the lower mass range:
 - MisID: $B \rightarrow hh', X_h \rightarrow h\mu\nu$
 - Part-Reco: $\mathcal{B} \to \pi \mu^+ \mu^-$, $B_c^+ \to J/\psi \mu^+ \nu$

	$B \rightarrow hh'$	22±1
<i>v</i>	$B^0 o \pi \mu \nu$	91±4
\bigcirc	$B_s^0 \to K \mu \nu$	23±3
E	$B o \pi \mu \mu$	26±3
B D	$\Lambda_b \to p \mu \nu$	4±2
	$B_c \to J/\psi\mu\nu$	7.2±0.3

Flavio Archilli - Heidelberg University

Mass calibration

- Invariant mass signal shape calibrated using data control channels:
 - Mass peak position determined using $B^0 \to K^+\pi^-$ and $B_s^0 \to K^+K^-$
 - $\sim 22 \text{MeV}/c^2$

LHCB-PAPER-2021-007

• Resolution from power law interpolation with dimuon resonances. Mass resolution

Normalisation

$$\mathscr{B}(B_{(s)}^{0} \to \mu^{+}\mu^{-}(\gamma)) = \frac{f_{\text{sig}}}{f_{d}} \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}} \frac{N_{\text{sig}}}{N_{\text{norm}}} \mathscr{B}(\text{norm}) = \alpha_{\text{s}}$$

- Two normalisation mode: $B^+ \to J/\psi K^+, B^0 \to K^+\pi^-$
- Efficiencies evaluated from simulation and control channels
- Hadronisation fraction from new LHCb combination
 - Uncertainty reduced by factor 2 to $\sim 3\%$

 $f_s/f_d(13 \,\mathrm{TeV}) = 0.254 \pm 0.008$ $\frac{f_s/f_d(13 \text{ TeV})}{f_s/f_d(7 \text{ TeV})} = 1.064 \pm 0.008$

Expected SM signal events:

147±8
$$B_s^0 \rightarrow \mu^+ \mu^-$$

16±1 $B^0 \rightarrow \mu^+ \mu^-$
~3 $B_s^0 \rightarrow \mu \mu \gamma_{\rm ISR}$ for $m_{\mu\mu} > 4.9$ GeV

Flavio Archilli - Heidelberg University

Branching fraction fit

- Unbinned fit on di-muon mass spectra in BDT bins:
 - 5 BDT bins each period (Run1, Run2) considered simultaneously, while bkg dominated bin excluded
 - Signal BFs and combinatorial yield free parameters
- Signal fraction constrained in each BDT bin to expectations
- Exclusive backgrounds yields constrained to their expectations

$$\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times$$

Flavio Archilli - Heidelberg University

... historical endeavour

Upper limit estimation

- $B^0 \to \mu\mu$ and $B_s^0 \to \mu\mu\gamma_{\rm ISR}$ not statistically significant
- CL_s method used to upper limits:
 - $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10} \text{ at } 95 \% \text{ CL}$
 - $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \text{GeV}/c^2} < 2.0 \times 10^{-9} \text{ at } 95 \% \text{ CL}$
- Compatibility of $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \text{GeV}/c^2}$ with background only hypothesis at 1.5 σ

Effective lifetime

- Same preselection as BF analysis but looser PID and only two BDT regions are considered
- Fit performed in 2 stages:
 - Invariant mass fit ($m_{\mu\mu} > 5320 \text{MeV}/c^2$) to statistically unfold the background
 - Acceptance function modelled on $B_s^0 \rightarrow \mu\mu$ simulated decays
- Whole procedure tested on $B^0 \to K^+\pi^-$ and $B_s^0 \rightarrow \bar{K}^+ K^-$ decays and compared with previous LHCb analysis:

Effective lifetime result

- Fit to $B_s^0 \to \mu\mu$ lifetime gives:
- $\tau_{\mu\mu} = (2.07 \pm 0.29 \pm 0.03) \,\mathrm{ps}$
- Main source of systematics:
 - contamination from $B \rightarrow hh'$ and $\Lambda_b \to p \mu \nu$
 - decay time acceptance accuracy
 - mass fit accuracy
- Result compatible at $1.5\sigma(2.2\sigma)$ with SM $A^{\hat{\mu}\mu}_{\Lambda\Gamma} = + 1(-1)$

 $(27.2 \text{ MeV}/c^2)$

andidates

Candidates / (1 ps)

Conclusions

- Purely leptonic *B* decays offer a rich lab to search for NP effects.
- Update of $B_{(s)}^0 \to \mu^+ \mu^-$ analysis on full Run1+Run2 dataset presented with improved strategy.
- $\mathscr{B}(B_s^0 \to \mu^+ \mu^-) = (3.09 + 0.46 + 0.15) \times 10^{-9}$
 - Uncertainty on $B_s^0 \to \mu^+ \mu^- \sim 15\%$, most precise single experiment measurement to date.
 - No evidence of $B^0 \to \mu^+ \mu^-$, strong limit on BF
 - First search for $B_s^0 \to \mu^+ \mu^- \gamma_{\rm ISR}$ process
 - Most precise measurement of $B_s^0 \to \mu^+ \mu^$ effective lifetime

