

$b \rightarrow s\ell\ell''$ and $b \rightarrow s\nu\bar{\nu}$ transitions at Belle II

WORKSHOP ON STATUS AND PERSPECTIVES OF PHYSICS AT HIGH INTENSITY, INFN-LNF

Gaetano de Marino

on behalf of the Belle II collaboration

IP region

e- 7 GeV 2.6 A

Main Ring

SuperKEKB

+ 4 GeV 3.6 A

Linac

BELLE II EXPERIMENT

KEKB

Asymmetric-energy e+e- collider:

Second generation B-factory based on the **nanobeam scheme**. The upgrade required a substantial redesign of the Belle II detector, whose performance is challenged by radiation damage and higher background (**design luminosity is x40 higher**). The aim is to guarantee **equal or better performance than Belle** @ KEKB.

BELLE II EXPERIMENT

- Good momentum and vertex resolution
- Well-known initial state and large acceptance
- Excellent calorimetry
- Sophisticated particle ID

BELLE II EXPERIMENT

- Good momentum and vertex resolution
- Well-known initial state and large acceptance
- **Excellent** calorimetry

mis-ID rate

1.6

1.4

1.2

ω ↑ 1.0

0.2

0.0

Ð

(0.56

Sophisticated particle ID K/ π separation ($\epsilon \sim 90\% @ 5-10\%$ fake) Lepton identification μ/π ($\epsilon \sim 90\%$ @ 7% fake) e/π ($\epsilon \sim 86\%$ @ <1% fake)

DATA TAKING

World Record Luminosity

 $\mathscr{L}_{peak} = 4.71 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (June 22, 2022) Currents ~1460 mA (LER) / 1143 mA (HER)

ON-resonance data $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ OFF-resonance data $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$ (60 MeV below the resonance)

Integrated lumi ON-resonance

 $365 \,\mathrm{fb}^{-1} \sim 0.9 \,BABAR$ $\sim 400 \times 10^6 \,\mathrm{B}\overline{\mathrm{B}}$

DATA TAKING

Belle II has a broad physics program, covering not only **B-mesons** but also

- **Tau-leptons**
- Charmed mesons/baryons
- Dark sector
- Etc.

Many topics will be presented during this workshop

A long journey ...

- 1st Long shutdown (LS1) in 2022-2023 (PXD, beam pipe, TOP)
- 2nd Long shutdown (LS2) in ~2028 (QCS, RF)
- The target integrated luminosity is 50 ab⁻¹ by ~2034

MOTIVATION FOR THE $\mathrm{b} \to \mathrm{s}$ searches

- FCNC transitions: Loop and box diagrams
- The b.r.'s are $\mathcal{O}(10^{-5\div7})$ level E.g. $\mathscr{B}_{SM}(B^+ \to K^+ \nu \bar{\nu}) = (5.67 \pm 0.38) \times 10^{-6} \mathrm{^{[1]}}$ $\mathscr{B}_{SM}(B \to K\tau \bar{\tau}) = \mathcal{O}(10^{-7}) \mathrm{^{[2]}}$
- Powerful probes of the SM consistency

b
$$\rightarrow$$
 s $\ell \ell$ LFU tests $R_H = \frac{\Gamma \left(B \to H \mu^+ \mu^- \right)}{\Gamma \left(B \to H e^+ e^- \right)} \mid H \in \{K^+, K^{*0/+}, K_S^0\}$

Missing-energy modes

b→s v v

b→s z z

b \rightarrow svv is theoretically cleaner (no diagrams with γ) **New-physics** particles may enter the loop diagrams or even mediate FCNCs at tree level, enhancing the BRs and/or modifying the angular distributions etc.

$b \rightarrow s \ell^+ \ell^- TOWARDS R_{K^{(*)}}$

Analysis for $B \rightarrow K \ell \ell \ell$ BF measurement on pre-LS1 dataset ongoing!

 ΔE fit projections

$b \rightarrow s \ell^+ \ell^- TOWARDS R_{K^{(*)}}$

- Measurement of the BF of $B \rightarrow K^* \ell \ell$, $\ell = \{e, \mu\}$ in preparation for the LFU tests
- The dataset corresponds to 189 fb⁻¹ and the studied channels are:

 $B^0 \rightarrow K^{*0}(892)(K^+\pi^-)\ell^+\ell^ B^+ \to K^{*+}(892)(K_S^0 \pi^+, K^+ \pi^0)\ell^+\ell^-$

- Background sources are suppressed with charm vetoes and BDT for $q\bar{q}$ and $B\bar{B}$ events
- Similar efficiency/precision for e and μ channels

Mode	Yield	Sign.
$B \rightarrow K^* \mu \mu$	22 ± 6	4.8σ
$B \rightarrow K^*ee$	18 ± 6	3.6σ
$B \rightarrow K^* \ell \ell$	38 ± 9	5.9σ

Fit projections Belle II (Preliminary) Entries / [0.0033 GeV/c²] $dt = 189 \text{ fb}^{-1}$ Signal Backaround Total 15 5.2 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.21 M_{bc} [GeV/c²]

@ B-factories we exploit the knowledge of the initial 4-momentum Beam energy transferred to $B\overline{B}$ pair: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{sig}\overline{B}_{tag}$ The reconstruction of the tag-side allows to infer the properties of the signal-side with missing energy – (semi-)leptonic/penguin decays – and to have a handle on backgrounds

Different B-tagging strategies are possible

@ B-factories we exploit the knowledge of the initial 4-momentum Beam energy transferred to $B\overline{B}$ pair: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{sig}\overline{B}_{tag}$ The reconstruction of the tag-side allows to infer the properties of the signal-side with missing energy – (semi-)leptonic/penguin decays – and to have a handle on backgrounds

@ B-factories we exploit the knowledge of the initial 4-momentum Beam energy transferred to $B\overline{B}$ pair: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{sig}\overline{B}_{tag}$ The reconstruction of the tag-side allows to infer the properties of the signal-side with missing energy – (semi-)leptonic/penguin decays – and to have a handle on backgrounds

@ B-factories we exploit the knowledge of the initial 4-momentum Beam energy transferred to $B\overline{B}$ pair: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{sig}\overline{B}_{tag}$ The reconstruction of the tag-side allows to infer the properties of the signal-side with missing energy – (semi-)leptonic/penguin decays – and to have a handle on backgrounds

- The Full Event Interpretation (FEI) is the algorithm for hadronic/semileptonic tag-side reconstruction at Belle II <u>Comput Softw Big Sci 3, 6 (2019)</u>
- Hierarchical approach. employs over 200 BDTs trained on simulated $\Upsilon(4S) \rightarrow B\overline{B}$ events to reconstruct $\mathcal{O}(10k)$ *B*-decay chains
- The FEI efficiency is calibrated with high-stat samples like $X \ell \nu$, where the signal B is reconstructed in $X \ell \nu$ final states: $\varepsilon_{calib} = N_{DATA}^{X \ell \nu} / N_{MC}^{X \ell \nu}$

LFV: $b \rightarrow s\ell\ell'$

- Neutrino mass and neutrino oscillations → the accidental lepton family symmetry in the SM is broken
 → family lepton number can be violated
- Charged LFV can occur through oscillations in loops but it is very suppressed
- Hints for LFU violation in $b \rightarrow sll$ and $b \rightarrow c/v^{[1-3]}$
- If LFU is violated, some BSM extensions predict that rates for LFV decays are close to current experimental sensitivity
- Some BSM extensions: Leptoquarks, Z'... [JHEP12(2016)027/ PRD92, 054013/ JHEP08(2021)050]

[1] <u>2103.11769</u>, [2] <u>1512.04442</u>, [3] <u>HFLAV</u>

$b \rightarrow s\tau \ell$ **SEARCHES** $\ell = \{e, \mu\}$

- Unlike tree-level, SM processes like $B \rightarrow D^{(*)}\tau\nu$, $B \rightarrow \tau\nu$ etc. this channel has the unique property of having the only neutrino coming from the $\tau \Rightarrow$ can compute τ recoil mass m_{τ}
 - Belle dataset (711 fb⁻¹) + hadronic B-tagging (FEI)
 - One prong τ decays are considered: $\tau^+ \rightarrow \ell^+ \nu \bar{\nu}, \pi^+ (n\pi^0) \bar{\nu}$
 - Background depends on charge configuration $K^+\tau^+\ell^-: B^+ \to \overline{D}^0(\to K^+\ell^-)X^+$ $K^+\tau^-\ell^+: B^+ \to \overline{D}^0(\to K^+X^-)\ell^+$
 - MVA is adopted for background suppression
 - Fit to m_{τ} distributions

$b \rightarrow s\tau \ell$ **SEARCHES** $\ell = \{e, \mu\}$

- Unlike tree-level, SM processes like B → D^(*)τν, B → τν etc. these channels have the unique property of having the only neutrino coming from the τ ⇒ can compute τ recoil mass m_τ
 - Belle dataset (711 fb⁻¹) + hadronic B-tagging (FEI)
 - One prong τ decays are considered: $\tau^+ \rightarrow \ell^+ \nu \bar{\nu}, \pi^+ (n\pi^0) \bar{\nu}$
 - Background depends on charge configuration $K^+\tau^+\ell^-: B^+ \to \overline{D}^0(\to K^+\ell^-)X^+$ $K^+\tau^-\ell^+: B^+ \to \overline{D}^0(\to K^+X^-)\ell^+$
 - MVA is adopted for background suppression
 - Fit to m_{τ} distributions
- Belle benefits from higher statistics than BaBar
 Belle II will provide updates with improved methods (e.g. different tagging strategy) and additional modes like $B^0 \rightarrow K_S^0/K^{*0}\tau \ell$

9

$B^+ \rightarrow K^+ \tau \ell$ with semileptonic B-tagging

Despite the degraded resolution, the background level is under control, which combined to the higher signal efficiency, provide a **sensitivity in the same ballpark of the hadronic-tag** analysis

$B^+ \rightarrow K^+ \tau \ell$ with semileptonic B-tagging

Can we do better?

MC study presented in <u>arXiv:2209.03387</u> (de Marino, Guadagnoli, Park, Trabelsi) Obtain M_{recoil} as a solution of a constrained minimisation, the constraints being: • Kinematic information \rightarrow Initial state knowledge + 2-body τ (hadronic) decays

■ Vertexing information → Not very constraining at B-factories

This information only brings improvement in resolution ($\sim 2x$) The semileptonic tagged-sample is orthogonal to the hadronic one; reaching a similar sensitivity is crucial to confirm an observation at any level of significance

 $b \rightarrow s \tau^+ \tau^-$ SEARCHES

Results at *B*-factories

BR($B^+ \rightarrow K^+ \tau \tau$) < 2.0 × 10⁻³ (90%CL) <u>BaBar</u> BR($B^0 \rightarrow K^{*0} \tau \tau$) < 2.25 × 10⁻³ (90%CL) <u>Belle</u> - sub. to PRD

Obtained with full Belle stat (711 fb⁻¹) Hadronic B-tagging Belle algorithm (<u>Neurobayes</u> FR) $\tau \rightarrow \ell \nu \bar{\nu}, \pi \nu$ modes considered Cut&count analysis

Handles for improvement with respect to Belle

- $\sim 2x$ hadronic B-tagging efficiency: FR \rightarrow FEI
- Multivariate analysis
- Additional au modes

Belle II projections from the <u>Snowmass White Paper</u>

$\mathcal{B}(B^0 \to K^{*0} \tau \tau) \text{ (had tag)}$						
ab^{-1}	"Baseline" scenario	"Improved" scenario				
1	$< 3.2 imes 10^{-3}$	$< 1.2 \times 10^{-3}$				
5	$< 2.0 imes 10^{-3}$	$< 6.8 imes 10^{-4}$				
10	$< 1.8 imes 10^{-3}$	$< 6.5 \times 10^{-4}$				
50	$< 1.6 \times 10^{-3}$	$< 5.3 \times 10^{-4}$				

"baseline": no further improvements other than higher stats

"Improved": 50% increase in signal efficiency for the same background level

11

$B^+ \rightarrow K^+ \nu \bar{\nu}$ - RECONSTRUCTION AND SELECTION

- Two neutrinos in the final state leaving no signature in the detector; the BF **can be measured at** *B***-factories** because of the clean event environment and the well-defined initial state
- Previous analyses at Belle/BaBar utilised the full reconstruction of the B_{tag} followed by the signal reconstruction. Low efficiencies (~0.04% for hadronic tag and ~0.2% for semileptonic tag) are obtained

Ехр	U.L. (90% CL)	Tag Method	Stat (fb ⁻¹)	Purity	
<u>BaBar</u>	1.6 x 10 ⁻⁵	SL+HAD	429	Semileptonic INCLUSIVE $D^{(*)} \ell \nu$	Hadronic $\mathbb{D}^{(*)}n\pi$
<u>Belle</u>	5.5 x 10 ⁻⁵	HAD	711	••••••••••••••••••••••••••••••••••••	
<u>Belle</u>	1.9 x 10 ⁻⁵	SL	711	Efficiency	-

PRL.127(2021)18,181802

${\rm B}^+ \,{\to}\, {\rm K}^+ \nu \bar{\nu}$ - Reconstruction and selection

- Two neutrinos in the final state leaving no signature in the detector; the BF **can be measured at** *B***-factories** because of the clean event environment and the well-defined initial state.
- Idea at Belle II: The signal is reconstructed as the highest p_T track with at least 1 PXD hit (correct match ~80 %) followed by inclusive reconstruction of the *Rest Of the Event* (ROE) → higher signal efficiency (~4%) but larger backgrounds from generic B decays and continuum production!

$B^+ \rightarrow K^+ \nu \bar{\nu}$ - BACKGROUND SUPPRESSION

- 51 features are used to train 2 consecutive binary classifiers (FastBDT) called BDT_1 and BDT_2 :
- Event shape
- Kinematics of the K+ candidate
- variables related to the ROE
- variables related to the D^{0/+}suppression

PRL.127(2021)18,181802

The BDT₂ is trained with the same features on the events with $BDT_1 > 0.9$

Signal region and control regions (used for background estimation) are defined in the $BDT_2 \times p_T(K^+)$ space

Belle II

200

150

100

/ 0.05

 $/\mathcal{L} dt = 63 \, \text{fb}^{-1}$

2000

1500

2022.11.09 - GdM - WORKSHOP ON PHI AT LNF

$B^+ \rightarrow K^+ \nu \bar{\nu}$ - VALIDATION

The analysis procedure is validated using $B^+ \rightarrow K^+ J/\psi(\mu^+\mu^-)$ events. The momentum of the signal kaon (2-body) is corrected to match the spectrum of 3-body $B^+ \rightarrow K^+ \nu \bar{\nu}$ events $\mu\mu$'s from the selected J/ ψ decays are ignored and the modified events are reconstructed with the inclusive tagging

An excellent Data-MC agreement for the BDT_{1,2} outputs is observed

The Data-MC agreement is also checked with off-resonance data (9 fb⁻¹)

A very good Data-MC shape agreement is found but with discrepancy in yields $(factor 1.4 \pm 0.1)$

A 50% normalisation uncertainty in the fit is used

$B^+ \rightarrow K^+ \nu \bar{\nu}$ - SIGNAL EXTRACTION

2022.11.09 - GdM - WORKSHOP ON PHI AT LNF

- The signal is extracted with an Extended Maximum Likelihood Binned Fit performed with **Pyhf**
- The systematic uncertainties (normalisations of bkg's yields, BR of the leading B-decays, PID correction, ...) are introduced in the likelihood as nuisance parameters
- The parameter of interest is signal strength μ as the multiplicative factor with respect to the SM expectation The fitted value is: $\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst})$

Data and post-fit predictions in the regions CR1 and SR

$B^+ \rightarrow K^+ \nu \bar{\nu}$ - **RESULT EXTRACTION**

$$\begin{split} \mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{obs} &= 1.9^{+1.3}_{-1.3} \, (\texttt{stat})^{+0.8}_{-0.7} \, (\texttt{syst}) \times 10^{-5} \\ \text{Corresponding to the upper limit} \\ \mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) &< 4.1 \times 10^{-5} @ 90 \% \text{ C.L.} \\ \text{Consistent with the SM expectation at } 1\sigma \end{split}$$

Despite the much smaller sample (63 fb⁻¹ vs 429 and 711 fb⁻¹), the result obtained at Belle II is competitive with the previous searches: the inclusive method offers improved sensitivity compared to other B-tagging approaches

The update of the measurement with pre-LS1 dataset is ongoing

SUMMARY

Belle II has integrated in the period 2019-2022 high-quality data corresponding to 400 fb⁻¹ (~1/2 Belle)

- Today measurements with 63 fb⁻¹ and 190 fb⁻¹ have been shown
- $b \rightarrow s$ transitions allow to effectively probe the physics beyond SM and can be tested at Belle II
 - $b \rightarrow s \ell \ell$: Can provide independent measurement of LFU ratios and BFs of $B \rightarrow K^{(*)} \ell \ell$ from LHCb
 - $b \to s\tau \ell$, $b \to s\nu \bar{\nu}$: Will offer unprecedented sensitivity in $B \to K^{(*)}\tau \bar{\tau}/K^{(*)}\nu \bar{\nu}$ decays
- More results are coming soon!

LHC*b* **MEASUREMENT**

Projection of integrated luminosity delivered by SuperKEKB to Belle II

- We start long shutdown I (LSI) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement works of machine and detector.
- We resume physics running from Fall 2023.
- A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.
- An LS2 for machine improvements could happen on the time frame of 2026-2027

FROM THE BELLE II PHYSICS BOOK

Observables	$\rm Belle~0.71ab^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab^{-1}}$
$R_K \; ([1.0, 6.0] { m GeV}^2)$	28%	11%	3.6%
$R_K \; (> 14.4 { m GeV}^2)$	30%	12%	3.6%
$R_{K^*}~([1.0, 6.0]{ m GeV^2})$	26%	10%	3.2%
$R_{K^*} \ (> 14.4 { m GeV^2})$	24%	9.2%	2.8%
$R_{X_s}~([1.0, 6.0]{ m GeV^2})$	32%	12%	4.0%
$R_{X_s}~(>14.4{ m GeV^2})$	28%	11%	3.4%

Table 67: The Belle II sensitivities to $B \to K^{(*)}\ell^+\ell^-$ observables that allow to test lepton flavour universality. Some numbers at Belle are extrapolated to $0.71 \,\mathrm{ab}^{-1}$.

Table 69: Sensitivities to the modes involving neutrinos in the final states. We assume that 5 ab^{-1} of data will be taken on the $\Upsilon(5S)$ resonance at Belle II. Some numbers at Belle are extrapolated to $0.71 \text{ ab}^{-1} (0.12 \text{ ab}^{-1})$ for the $B_{u,d} (B_s)$ decay.

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$\text{Br}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${ m Br}(B^0 o K^{*0} u ar{ u})$	< 180%	26%	9.6%
${ m Br}(B^+ \to K^{*+} \nu \bar{\nu})$	< 420%	25%	9.3%
$F_L(B^0 \to K^{*0} \nu \bar{\nu})$	-	_	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077
${ m Br}(B^0 o u ar{ u}) imes 10^6$	< 14	< 5.0	< 1.5
$Br(B_s \to \nu \bar{\nu}) \times 10^5$	< 9.7	< 1.1	_

Ol	oservables

$Br(B^+ \to K^+ \tau^{\pm} e^{\mp}) \cdot 10^6$	< 2.1
${ m Br}(B^+ o K^+ au^\pm \mu^\mp) \cdot 10^6$	< 3.3
${ m Br}(B^0 o au^\pm e^\mp)\cdot 10^5$	< 1.6
${ m Br}(B^0 o au^\pm \mu^\mp) \cdot 10^5$	< 1.3

LHC*b* **MEASUREMENT** B⁺ \rightarrow K⁺ $\mu^{-}\tau^{+}$ (using B^{*0}_{s2})

- 9 fb⁻¹ @ 7, 8 and 13 TeV (Run1 & Run2)
- Use $B_{s2}^{*0} \rightarrow B^+K^-$ decay: about 1% of B^+ production
- $K^+\mu^-$ pair from secondary vertex plus additional track t⁺

- Expect peak at τ mass also for B not from B_{s2}^{*0} decay, but wider distribution
- $K^+\mu^-\tau^+$ experimentally preferred over $K^+\mu^+\tau^-$ as it has a lower background from sSL B decays, because CF decays of the D mesons are likely to lead to K's of the same charge as the muon

- Remaining backgrounds produce smooth m²_{miss} distributions
- Search performed in bins of final BDT output with increasing signal sensitivity

JHEP 06 (2020) 129 S. Weber - ICHEP 2020

Mode	U.L. (90% CL)	Exp.
$B^+ \rightarrow K^+ \tau \mu$	4.8 x 10⁻⁵	BaBar
$B^+ \rightarrow K^+ \tau e$	3.0 x 10 ⁻⁵	BaBar
$B^+ \to K^+ \tau^+ \mu^-$	3.9 x 10 ⁻⁵	LHCb

SUPERKEKB

BABAR RESULTS ON $B \rightarrow h\tau \ell$

TABLE IV: Results for the observed sideband events $N_{sb,i}$, signal-to-sideband ratio $R_{b,i}$, expected background events b_i , number of observed events n_i , signal efficiency $\epsilon_{h\tau\ell,i}$ (assuming uniform three-body phase space decays) for each τ channel iand $B \to h\tau\ell$ [9] branching fraction central value and 90% C.L. upper limits (UL). All uncertainties include statistical and systematic sources.

							$\mathcal{B}(B \to h \tau \ell) \; (\times 10^{-5})$	
Mode	τ channel	$N_{sb,i}$	$R_{b,i}$	b_i	n_i	$\epsilon_{h au\ell,i}$	central value	90% C.L. UL
	e	22	0.02 ± 0.01	0.4 ± 0.2	2	$(2.6 \pm 0.2)\%$		
$B^+ \to K^+ \tau^- \mu^+$	μ	4	0.08 ± 0.05	0.3 ± 0.2	0	$(3.2\pm0.4)\%$	$0.8 \ ^{+1.9}_{-1.4}$	< 4.5
	π	39	0.045 ± 0.020	1.8 ± 0.8	1	$(4.1\pm0.4)\%$		
	e	5	0.03 ± 0.01	0.2 ± 0.1	0	$(3.7 \pm 0.3)\%$		
$B^+ \to K^+ \tau^+ \mu^-$	μ	3	0.06 ± 0.03	0.2 ± 0.1	0	$(3.6\pm0.7)\%$	$-0.4 \ ^{+1.4}_{-0.9}$	< 2.8
	π	153	0.045 ± 0.010	6.9 ± 1.5	11	$(9.1\pm0.5)\%$		
	e	6	0.095 ± 0.020	0.6 ± 0.1	2	$(2.2 \pm 0.2)\%$		
$B^+ \to K^+ \tau^- e^+$	μ	4	0.025 ± 0.010	0.1 ± 0.1	0	$(2.7\pm0.6)\%$	$0.2 \ ^{+2.1}_{-1.0}$	< 4.3
	π	33	0.045 ± 0.015	1.5 ± 0.5	1	$(4.8\pm0.6)\%$		
	e	8	0.10 ± 0.06	0.8 ± 0.5	0	$(2.8 \pm 1.1)\%$		
$B^+ \to K^+ \tau^+ e^-$	μ	3	0.045 ± 0.020	0.1 ± 0.1	0	$(3.2 \pm 0.7)\%$	$-1.3 \ ^{+1.5}_{-1.8}$	< 1.5
	π	132	0.035 ± 0.010	4.6 ± 1.3	4	$(8.7\pm1.2)\%$		
	e	55	0.017 ± 0.010	0.9 ± 0.6	0	$(2.3 \pm 0.2)\%$		
$B^+ \to \pi^+ \tau^- \mu^+$	μ	10	0.11 ± 0.04	1.1 ± 0.4	2	$(2.9\pm0.4)\%$	$0.4 \ ^{+3.1}_{-2.2}$	< 6.2
	π	93	0.035 ± 0.010	3.3 ± 0.9	4	$(2.8\pm0.2)\%$		
	e	171	0.012 ± 0.003	2.1 ± 0.5	2	$(3.8 \pm 0.3)\%$		
$B^+ \to \pi^+ \tau^+ \mu^-$	μ	89	0.04 ± 0.01	3.6 ± 0.9	4	$(4.8\pm0.3)\%$	$0.0 \ ^{+2.6}_{-2.0}$	< 4.5
	π	512	0.050 ± 0.005	25 ± 3	23	$(9.1\pm0.6)\%$		
	e	1	0.050 ± 0.025	0.1 ± 0.1	1	$(2.0 \pm 0.8)\%$		
$B^+ \to \pi^+ \tau^- e^+$	μ	16	0.025 ± 0.010	0.4 ± 0.2	1	$(2.8\pm0.3)\%$	$2.8 \ ^{+2.4}_{-1.9}$	< 7.4
	π	172	0.035 ± 0.008	6.0 ± 1.4	7	$(5.8\pm0.3)\%$		
	e	31	0.033 ± 0.013	1.0 ± 0.4	0	$(2.9 \pm 0.3)\%$		
$B^+ \to \pi^+ \tau^+ e^-$	μ	247	0.012 ± 0.005	3.0 ± 1.2	2	$(4.6\pm0.4)\%$	$-3.1 {}^{+2.4}_{-2.1}$	< 2.0
	π	82	0.07 ± 0.03	5.7 ± 2.5	3	$(3.7 \pm 1.0)\%$		

B-ANOMALIES OBSERVABLES

TABLES

Decay Mode	$N_{B\overline{B}}$	${\cal B}$ upper limit			
	(10^{6})	(90% C.L.)			
Lepton flavor violating modes (light flavors):			Decay Mode	$N_{B\overline{B}}$	${\mathcal B}$ upper limit
$B^0 \to \mu^{\pm} e^{\mp}$	85	17×10^{-8}		(10^{6})	(90% C.L.)
$B^0 \rightarrow \mu^{\pm} e^{\mp}$	384	9.2×10^{-8}	Lepton flavor violat	$ting \ modes$	(including τ):
$B^+ \to \pi^+ \mu^\pm e^\mp$	230	17×10^{-8}	$B^0 \rightarrow \tau^{\pm} e^{\mp}$	378	2.8×10^{-5}
$B^0 \rightarrow \pi^0 \mu^{\pm} e^{\mp}$		14×10^{-8}	$B^0 \to \tau^{\pm} \mu^{\mp}$		2.2×10^{-5}
$B \rightarrow \pi \mu^{\pm} e^{\mp}$		9.2×10^{-8}	$B^+ \to K^+ \tau^- \mu^+$	472	4.5×10^{-5}
$B^+ \rightarrow K^+ \mu^- e^+$	220	9.2×10^{-8}	$B^+ \to K^+ \tau^+ \mu^-$		2.8×10^{-5}
$B^+ \rightarrow K^+ \mu^+ e^-$	220	13×10^{-8}	$B^+ \to K^+ \tau^\mp \mu^\pm$		4.8×10^{-5}
$B \to K \ \mu \ e$ $B^+ \to K^+ \mu^{\pm} e^{\pm}$		13×10^{-8}	$B^+ \to K^+ \tau^- e^+$		4.3×10^{-5}
$D^{+} \rightarrow K^{-} \mu^{+} e^{\pm}$ $P^{0} \rightarrow K^{0} \mu^{\pm} e^{\pm}$		9.1×10^{-8}	$B^+ \to K^+ \tau^+ e^-$		1.5×10^{-5}
		27×10^{-8}	$B^+ \to K^+ \tau^\mp e^\pm$		3.0×10^{-5}
$B \to K\mu^+ e^+$		3.8×10^{-8}	$B^+ \to \pi^+ \tau^- \mu^+$		6.2×10^{-5}
$B^+ \rightarrow K^{**0} \mu^- e^+$		$53 \times 10^{\circ}$	$B^+ \to \pi^+ \tau^+ \mu^-$		4.5×10^{-5}
$B^+ \to K^{*0} \mu^+ e^-$		34×10^{-8}	$B^+ \to \pi^+ \tau^\mp \mu^\pm$		7.2×10^{-5}
$B^+ \to K^{*0} \mu^+ e^\pm$		58×10^{-8}	$B^+ \to \pi^+ \tau^- e^+$		7.4×10^{-5}
$B^+ \to K^{*+} \mu^- e^+$		130×10^{-8}	$B^+ \rightarrow \pi^+ \tau^+ e^-$		2.0×10^{-5}
$B^+ \to K^{*+} \mu^+ e^-$		99×10^{-8}	$B^+ \rightarrow \pi^+ \tau^\mp e^\pm$		7.5×10^{-5}
$B^+ \to K^{*+} \mu^{\mp} e^{\pm}$		140×10^{-8}			
$B \to K^* \mu^{\mp} e^{\pm}$		51×10^{-8}			

TABLES

Branching fractions of charmless semileptonic B^+ decays to LFV and LNV final states (part 1)

Branching fractions of charmless semileptonic B^0 decays to LFV and LNV final states

STATUS OF R_K AND PROSPECTS

Semi-leptonic B decays are showing tensions with the SM predictions that are connected to a possible violation of the <u>Lepton Flavor Universality</u> (LFU). Different behaviour of lepton generations in the process:

 $b \rightarrow sl^{+}l^{-} \text{ (neutral current): } \mu \text{ vs. e}$ $R_{K} = \frac{\Gamma \left(B \rightarrow K \mu^{+} \mu^{-} \right)}{\Gamma \left(B \rightarrow K e^{+} e^{-} \right)} \bigg|_{q^{2} \in (q_{\min}^{2}, q_{\max}^{2})}$ $\frac{R_{K}^{exp} < R_{K}^{SM} \sim 1}{R_{K}^{exp} < R_{K}^{SM} \sim 1}$

2022.11.09 - GdM -WORKSHOP ON PHI AT LNF SHAPE VARIABLES FOR CONTINUUM SUPPRESSION

Variables related to the B meson direction: the spin-1 Y(4S) decaying into two spin-0 B mesons results in a sin² Θ_B angular distribution with respect to the beam axis; in contrast for $e^+e^- \rightarrow \text{ ff}$ events, the spin-1/2 fermions f, and its two resulting jets, are distributed following a 1 + cos² Θ_B distribution. Using the angle Θ_B between the reconstructed momentum of the B candidate (computed in the Y (4S) reference frame) and the beam axis, the variable **[cos\Theta_B]** allows one to discriminate between signal B decays and the B candidates from continuum background.

The Fox-Wolfram moments: for a collection of N particles with momenta pi, the k-th order Fox-Wolfram moment Hk is defined as

$$\mathbf{H}_{\mathbf{k}} = \sum_{i,j}^{n} |\overrightarrow{\mathbf{p}}_{i}| |\overrightarrow{\mathbf{p}}_{j}| \mathbf{P}_{\mathbf{k}}(\cos\theta_{ij})$$

where Θ_{ij} is the angle between p_i and p_j , and P_k is the k-th order Legendre polynomial. Notice that in the limit of vanishing particle masses, $H_0 = 1$; that is why the normalized ratio $R_k = H_k/H_0$ is often used, so that for events with two strongly collimated jets, R_k takes values close to zero (one) for odd (even) values of k. These sharp signatures provide a convenient discrimination between events with different topologies.

 $R_n = \frac{H_n}{H_0}$

Thrust: for a collection of N momenta p_i (i = 1,...N), the thrust axis T is defined as the unit vector along which their total projection is maximal; the thrust scalar T (or thrust) is a derived quantity defined as

$$\mathbf{T} = \frac{\sum_{i=1}^{N} |\vec{\mathbf{T}} \cdot \vec{\mathbf{p}}_{i}|}{\sum_{i=1}^{N} |\vec{\mathbf{p}}_{i}|}$$

For a BB event, both B mesons are produced almost at rest in the Y(4S) rest frame, so their decay particles are isotropically distributed, their thrust axes are randomly distributed, and thus $|\cos \Theta_T|$ follows a uniform distribution in the range [0,1]. In contrast for $q\bar{q}$ events, the momenta of particles follow the direction of the jets in the event, and as a consequence the thrusts of both the B candidate and the ROE are strongly directional and collimated, yielding a $|\cos \Theta_T|$ distribution strongly peaked at large values.

Cleo Cones: Set of nine variables corresponding to the momentum flow around the thrust axis of the B candidate, binned in nine cones of 10° around the thrust axis as illustrated

