RARE DECAYS OF HEAVY QUARKS (THEORY)

Luca Silvestrini INFN, Rome

- Introduction
- Rare B decays
- Rare D decays
- Conclusions

- The LHC has so far confirmed the validity of the SM: the most general renormalizable theory w. gauge group SU(3)_c⊗SU(2)_L⊗U(1)_Y, 3 generations of quarks and leptons and one Higgs doublet
- No new particle has been detected, pushing lower bounds on NP in the multi-TeV range (with caveats)

- The SM has several accidental symmetries, among which the absence of tree-level Flavour Changing Neutral Currents
- All flavour mixing & weak CPV in the SM occurs in charged currents, described by CKM parameters, e.g. λ , A, $\overline{\rho}, \overline{\eta}$
- FCNC couplings arise at loop level and are CKM- and GIMsuppressed: highly sensitive to virtual effects of heavy NP
- Flavour physics crucial for indirect NP searches, waiting for the energy frontier to be pushed further

Luca Silvestrini

- FCNC Z couplings and boxes for B decays have "hard GIM": m_q^2/M_W^2 , so top-quark dominated and local
- FCNC gluon and photon couplings for B decays have "soft GIM": $log(m_q^2/M_w^2)$, so infrared sensitive
- short-distance FCNC couplings for D decays suppressed by tiny CKM factors and GIM

- $B \rightarrow \tau v$
 - helicity suppressed tree-level decay
 - uncertainties from CKM element $|V_{\text{ub}}|$ and F_{B}
 - best SM prediction from UTA, which gives best knowledge of CKM factors and decay constants:

BR(B→τν)TH = (0.869 ± 0.047) 10⁻⁴

 $BR(B \rightarrow \tau v)^{exp} = (1.06 \pm 0.19) 10^{-4}$

 very sensitive to chirality-flipping NP, e.g. charged Higgs

- $B_{s,d} \rightarrow |+|^-$
 - short distance contribution from Z-penguins and boxes, dominated by the top (C_{10}^A); negligible long distance, uncertainties from CKM elements and F_B
 - best SM prediction from UTA, which gives best knowledge of CKM factors and decay constants:

BR(B_s→ $\mu^+\mu^-$) = (3.47±0.14) 10⁻⁹

BR(B_d→ $\mu^+\mu^-$) = (9.48±0.36) 10⁻¹¹

- sensitive to NP in C_{10}^{A} and in (pseudo)scalar operators

- $B \rightarrow K^{(*)} \nu \overline{\nu}, B \rightarrow \pi / \rho \nu \overline{\nu}$
 - also short-distance dominated, negligible long distance (however, tree-level contribution present for B⁺ from charged lepton exchange)
 - with respect to $B_{s,d} \rightarrow l^+l^-$, additional uncertainty from form factors
 - no strong phase, so no direct CPV
 - interesting correlations with b \rightarrow s,d l⁺l⁻

- $B \rightarrow K^{(*)}|_{+}|_{-}$, $B \rightarrow \pi/\rho|_{+}|_{-}$ and $B_{s} \rightarrow \phi|_{+}|_{-}$, $B_{s} \rightarrow K^{(*)}|_{+}|_{-}$
 - (much) more complicated due to photon contribution, which introduces some infrared sensitivity
 - in addition to form factors, need an estimate of "charming penguins", i.e. of rescattering from intermediate tetraquarks, $D_{(s)}^{(*)}-\overline{D}^{(*)}$ states, etc. (not a singularity in q², not related to J/ψ)
 - BR's and angular distributions not (yet) calculable

Charming Penguins in $B \rightarrow K^*|^+|^-$

Luca Silvestrini

Charming Penguins in $B \rightarrow K^*|^+|^-$

Luca Silvestrini

LUV in Rare B Decays

- Charming penguins & other hadronic effects cannot generate Lepton Universality Violation, so LUV would be a clear signal of NP
- However, the interpretation of LUV in terms of NP contributions is affected by hadronic uncertainties

Radiative B Decays

- Huge theoretical efforts to achieve full NNLO for inclusive $b \rightarrow s\gamma$ including the charm mass dependence
- Current SM predictions for E_{γ} >1.6 GeV:
 - BR(B→X_sγ) = (3.40 ± 0.17) 10⁻⁴
 - BR(B→X_{s+d}γ)/BR(B→X_cI_ν) = (3.35 ± 0.16) 10⁻³
- Error budget: 3% higher orders, 3% charm mass interpolation, 2.5% parametric & NP, improvable with more data

Misiak, Rehman &

Steinhauser,

2002.01548

Radiative B Decays

- $A_{CP}(B \rightarrow X_{s+d\gamma})$ null test of the SM, very sensitive to NP Hurth, Lunghi & Porod, hep-ph/0312260
- Exclusive radiative B decays more uncertain due to FFs and factorization
- Allow to access photon polarization through time-dependent CP asymmetries

Rare D decays as Null Tests of the Standard Model

- $D \rightarrow \mu^+ \mu^-$
 - short distance contribution not observable (10-18)
 - long distance dominated by two-photon exchange: BR($D \rightarrow \mu^+\mu^-$)~3 10⁻⁵ BR($D \rightarrow \gamma\gamma$), could be around few times 10⁻¹³ Burdman et al., hep-ph/0112235
- $D \rightarrow P_{VV}\overline{V}$
 - unobservably small, except for the possible LD τ contribution in charged D decays

Burdman et al., hep-ph/0112235

Rare D decays as Null Tests of the Standard Model

- $D \rightarrow PI^+I^-$, $\Lambda_c \rightarrow pI^+I^-$
 - given the smallness of SM short-distance contributions, one has C_{10}^{A} ~0 and therefore

A_{FB} = **0**

- in the baryonic channel, one also has $F_L=1/3$ at the kinematic endpoints

Hiller et al. '21, '22

CONCLUSIONS

- Rare decays of heavy mesons are a powerful probe of NP
- Several very clean predictions available:
 - BR(B⁺ $\rightarrow \tau^+ \nu$), BR(B_{s,d} $\rightarrow \mu^+ \mu^-$)
 - BR(B \rightarrow X_s γ), BR(B \rightarrow X_s $|^+|^-$)
 - lepton universality
 - null tests in rare D decays
- Care must be taken in channels where long-distance contributions might be relevant