Instrumental asymmetries

M. Dorigo, D. Ghosh, M. Mantovano, S. Raiz, D. Tonelli (University and INFN Trieste)

Belle II Italy

May 29, 2022

Motivation

- Measurement of CP asymmetries in B decays are a key part of the Belle II physics program.
E.g. $\mathscr{A}_{C P}\left(B^{+} \rightarrow D^{0} K^{+}\right)$to measure $\gamma, \mathscr{A}_{C P}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)$ and $\mathscr{A}_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)$ for $\alpha, \mathscr{A}_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)$ for testing isospin sum-rules.
- To measure CP asymmetries in these decays we need to subtract spurious asymmetries introduced due to:

1. Different interaction cross section of particle/antiparticle (e.g. K^{+} / K^{-}) with the detector;
2. Different reconstruction and PID efficiencies for oppositely charged particles.

- These detection asymmetries $\left(\mathscr{A}_{\text {det }}\right)$ can be measured with high precision using control channels with expected CPV ~ 0 (or known with high precision).
- We measured $\mathscr{A}_{\text {det }}(K \pi)$ and $\mathscr{A}_{\text {det }}(\pi)$ using $D^{0} \rightarrow K^{-} \pi^{+}$and $D^{+} \rightarrow K_{s}^{0} \pi^{+}$decays. From these, we can also obtain $\mathscr{A}_{\text {det }}(K)$.

det from D control channels

- Observed charge asymmetries $\mathscr{A}_{\text {obs }}$ are due to the combination of CP-violating effects, instrumental asymmetries and forward-backward asymmetry.

$$
\mathscr{A}_{\mathrm{obs}}=\frac{N_{\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}^{+}-N_{\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)}^{-}}{N_{\left(D^{0} \rightarrow K^{-} \pi^{+}\right)}^{+}+N_{\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)}^{-}}=\mathscr{A}_{C P}+\mathscr{A}_{\text {det }}+\mathscr{A}_{\mathrm{FB}}
$$

Forward-backward asymmetry Instrumental asymmetry

- Assume $\mathscr{A}_{C P}\left(D^{0} \rightarrow K \pi\right)=0, \mathscr{A}_{C P}\left(D^{+} \rightarrow K_{s}^{0} \pi^{+}\right)=(-0.41 \pm 0.09) \%$ from PDG.
- For $D^{+} \rightarrow K_{s}^{0} \pi^{+}, \mathscr{A}_{d e t}\left(K_{s}^{0} \pi^{+}\right) \simeq \mathscr{A}_{d e t}\left(K_{s}^{0}\right)+\mathscr{A}_{d e t}\left(\pi^{+}\right)$. We assume $\mathscr{A}_{d e t}\left(K_{s}^{0}\right)=0$ (neglect tiny asymmetry induced by $K^{0} C P$-asymmetry).

Forward-backward production asymmetry

- $\mathscr{A}_{F B}$ contribution due to $\gamma^{*}-Z^{0}$ interference in $e^{+} e^{-} \rightarrow c \bar{c}$.
- $\mathscr{A}_{F B}$ is antisymmetric as function of $\cos \left(\theta^{*}\right)$ (angle of D meson production in CM system). https://arxiv.org/ftp/arxiv/papers/1808/1808.10567.pdf
- Assume that $\mathscr{A}_{\text {det }}$ is not antisymmetric as function of $\cos \left(\theta^{*}\right)$, we can cancel $\mathscr{A}_{F B}$ by combining measurement of $\mathscr{A}_{\text {obs }}$ in opposite bins of $\cos \left(\theta^{*}\right)$:

$$
\mathscr{A}_{\mathrm{det}}=\frac{\mathscr{A}_{o b s}\left(\cos \left(\theta^{*}\right)\right)+\mathscr{A}_{o b s}\left(-\cos \left(\theta^{*}\right)\right)}{2}
$$

Sample and selection

Data: Proc12 + buckets16-25 (189.26 fb^{-1}).
SignaIMC: from MC14ri-a $\left(300 \mathrm{fb}^{-1}\right)$.
Vertex fit on D: treefit
Applied the latest beam energy and momentum corrections.
Tracks:thetalnCDCAcceptance + Idrl $<0.5+I d z l<3+$ chiProb $>0+$ CDCHits >0

$D^{0} \rightarrow K^{-} \pi^{+}$and $D^{+} \rightarrow K_{s}^{0} \pi^{+}$samples

$D^{0} \rightarrow K^{-} \pi^{+}$

$$
D^{+} \rightarrow K_{s}^{0} \pi^{+}
$$

Determining $\mathscr{A}_{\text {det }}$ dependence in data

Study $\mathscr{A}_{\text {det }}$ binning the sample in:

- p : interaction probabilities with matter depend on momentum;
- $\cos (\theta)$: different material budget traversed by the particle;
- CDC hits: tracking and $d E / d x$ resolution depends on number of hits, and these differ on average for track with opposite curvature.
- For $K \pi, \mathscr{A}_{\text {det }}$ as a function of kaon variables $\left(\mathscr{A}_{d e t}(K \pi) \simeq \mathscr{A}_{d e t}(K)+\mathscr{A}_{d e t}(\pi)\right.$ and $\left.\mathscr{A}_{d e t}(K) \gg \mathscr{A}_{d e t}(\pi)\right) ;$
- For $K_{s}^{0} \pi, \mathscr{A}_{\text {det }}$ as a function of pion variables $\left(\mathscr{A}_{d e t}\left(K_{s}^{0}\right)=0.\right)$.

Split the sample in D^{0} and \bar{D}^{0} candidates and fit D_{-}mass to compute the signal yield and calculate $\mathscr{A}_{\mathrm{obs}}=\left[N\left(D^{0}\right)-N\left(D^{0}\right] /\left[N\left(D^{0}\right)+N\left(D^{0}\right)\right]\right.$. Subtract $\mathscr{A}_{\mathrm{FB}}$ by doing the measurement in opposite bins of $\cos \left(\theta^{*}\right)$ and obtain $\mathscr{A}_{\mathrm{det}}$.

These three variables are correlated. Will show the dependence one by one only for illustration.

$\mathscr{A}_{\text {det }}$ dependences : $D^{0} \rightarrow K^{-} \pi^{+}$

Check marginal distribution: integrate over $\cos _{K}(\theta)$ and K_CDC_hits.

Check marginal distribution: integrate over $p_{K}(\theta)$ and K_CDC_hits.

MC shown only for comparison.
$\mathscr{A}_{\text {det }}$ dependences : $D^{0} \rightarrow K^{-} \pi^{+}$
Integrate over all kinematic variables.

Strong dependence of $\mathscr{A}_{\text {det }}$ on KCDChits.
The discrepancy between data and MC is known and it is due to a drift time miscalibration in the CDC simulated in MC.

Strategy to evaluate $\mathscr{A}_{\text {det }}$ for the analyses

- $\mathscr{A}_{\text {det }}$ is sample-dependent: different values according to different kinematics and number of CDChits of a track.
- Need to consider to ($p, \cos (\theta), C D C h i t s)$ distributions of kaon and pion in decays, which might differ from those of our control channel.
- Apply weights to correct the distributions of the control channel such that they match those of any given B decay:

1. Split the control channel in bins of CDChits and in each bin:
A. Correct the $(p, \cos (\theta))$ distributions of the control channel (weight from MC);
B. Determine $\mathscr{A}_{\text {det }}$ on the corrected-sample.
2. Average the $\mathscr{A}_{\text {det }}$ values considering the CDChits distribution of the B decay (from data).

- Will show a closure test in MC that validates the method.

$\mathscr{A}_{\text {det }}(K \pi)$ closure-test with MC

- Take as example $B^{0} \rightarrow K \pi$ decays. Standard selections on tracks, with a tight cut on continuum-suppression BDT (CS>0.95), and kaonID>0.25. Known value of $\mathscr{A}_{\text {det }}(K \pi)=0.0012 \pm 0.0015$ in $M C$: this is the target.
- Consider $D^{0} \rightarrow K \pi$ control channel (CS>0.50, KaonID>0.25). Measured $\mathscr{A}_{\text {det }}(K \pi)=-0.0076 \pm 0.0007$.
- Different values as expected since $p_{K}, \cos _{K}(\theta)$ and CDChits(K) differs:
p_{K} distributions

$\cos _{K}(\theta)$ distributions

KnCDChits distributions

$\mathscr{A}_{\mathrm{det}}(K \pi)$ closure-test with MC
$\xrightarrow{0.4}$ the correction: match the target value
$\mathscr{A}_{\text {det }}$ from $D^{0} \rightarrow K \pi$ without any correction for p_{K} and $\cos _{K}(\theta)$ distributions.

- The points are placed at the average of the CDChits distribution in the bin: it might differs for B^{0} and D^{0} (before the correction).
- Average of the $\mathscr{A}_{\text {det }}(K \pi)$ values from corrected $D^{0} \rightarrow K \pi$ sample, considering CDChits distribution of $B^{0} \xrightarrow{\rightarrow} K \pi: 0.0015 \pm 0.0007$ in agreement with target 0.0012 ± 0.0015
- We checked the procedure for different PID $\underset{12}{\text { and }}$ CS selections and get expected results.

$\mathscr{A}_{\mathrm{det}}$ dependences : $D^{+} \rightarrow K_{s}^{0} \pi^{+}$

Check marginal distribution: integrate over $\cos _{\pi}(\theta)$ and pi_CDC_hits.

Check marginal distribution: integrate over $p_{\pi}(\theta)$ and pi_CDC_hits.

Observe soft $\mathscr{A}_{\text {det }}$ dependencies as a function of $p_{\pi}(\theta)$ and $\cos _{\pi}(\theta)$.

$\mathscr{A}_{\mathrm{det}}$ dependences : $D^{+} \rightarrow K_{s}^{0} \pi^{+}$

Integrate over all kinematic variables.

Strong dependence of $\mathscr{A}_{d e t}$ on piCDChits.

$\mathscr{A}_{\mathrm{det}}(\pi)$ from $D^{+} \rightarrow K_{s}^{0} \pi^{+}$

- The method to compute $\mathscr{A}_{\text {det }}(\pi)$ using $D^{+} \rightarrow K_{s}^{0} \pi^{+}$for a given decay is the same used to compute $\mathscr{A}_{\text {det }}(K \pi)$.
- A closure-test to compute $\mathscr{A}_{\text {det }}(\pi)$ for $B^{+} \rightarrow \rho^{+}\left(\rightarrow \pi^{+} \pi^{0}\right) \rho^{0}\left(\rightarrow \pi^{+} \pi^{-}\right)$decay using this control channel is ongoing.
- We can also use $D^{0} \rightarrow K^{-} \pi^{+}$and $D^{+} \rightarrow K_{s}^{0} \pi^{+}$to compute $\mathscr{A}_{\text {det }}(K)$:

1. Given ($\left.p_{K^{\prime}}, \cos _{K}(\theta), K n C D C h i t s\right)$ distributions of a B decay, we can compute $\mathscr{A}_{\text {det }}(K \pi)$ using $D^{0} \rightarrow K^{-} \pi^{+}$channel;
2. Weight the π distributions of $D^{+} \rightarrow K_{s}^{0} \pi^{+}$to match those of $K \pi$;
3. Compute $\mathscr{A}_{d e t}(K)=\mathscr{A}_{d e t}(K \pi)-\mathscr{A}_{d e t}(\pi)$.

Summary

- Measured $\mathscr{A}_{\text {det }}$ for $K \pi$ and π, with a precision of $\mathcal{O}\left(1^{\circ} /_{o o}\right)$ and $\mathcal{O}\left(3^{\circ} /_{o o}\right)$ using $D^{0} \rightarrow K^{-} \pi^{+}$and $D^{+} \rightarrow K_{s}^{0} \pi^{+}$.
- First study of the dependence of $\mathscr{A}_{\text {det }}$. Found large dependence as a function of $p, \cos (\theta)$ and CDChits of the tracks.
- Developed a method to compute $\mathscr{A}_{\text {det }}$ from control channel for any given decay, taking into account these dependences.
- Will release a tool for analysts and document everything in a supporting note.
- Will be used in analyses targeting ICHEP, e.g. GLW with $B^{+} \rightarrow D^{0} h^{+}$, and measurement of $\mathscr{A}_{C P}$ in $B^{+} \rightarrow h^{+} \pi^{0}$ and $B^{0} \rightarrow K^{*} \pi^{0}$ decays.

Backup

$\mathscr{A}_{\text {det }}$ depends on p_{K}
Interaction probabilities between K^{+} / K^{-}depend on momentum.

$\mathscr{A}_{d e t}$ depends on $\cos _{K}(\theta)$

different material budget traversed by particle.

$\mathscr{A}_{\text {det }}$ dependences : $D^{0} \rightarrow K^{-} \pi^{+}$

Integrate over all kinematic variables and K_CDC_hits.

The circled points represent the $\mathscr{A}_{\text {det }}$ values in the ϕ_{K} region in which there are two layers of PXD (more material budget traversed by particle). In any case, we assume no dependence on ϕ_{K}.

