Instrumental asymmetries

M. Dorigo, D. Ghosh, M. Mantovano, S. Raiz, D. Tonelli (University and INFN Trieste)

Belle II Italy May 29, 2022

Motivation

• Measurement of CP asymmetries in B decays are a key part of the Belle II physics program.

E.g. $\mathscr{A}_{CP}(B^+ \to D^0 K^+)$ to measure γ , $\mathscr{A}_{CP}(B^+ \to \rho^+ \rho^0)$ and $\mathscr{A}_{CP}(B^+ \to \pi^+ \pi^0)$ for α , $\mathscr{A}_{CP}(B^+ \to K^+ \pi^0)$ for testing isospin sum-rules.

- To measure CP asymmetries in these decays we need to subtract spurious asymmetries *introduced due to:*
 - detector;
- These detection asymmetries (\mathscr{A}_{det}) can be measured with high precision using control channels with expected CPV ~ 0 (or known with high precision).
- these, we can also obtain $\mathcal{A}_{det}(K)$.

1. Different interaction cross section of particle/antiparticle (e.g. K^+/K^-) with the

2. Different reconstruction and PID efficiencies for oppositely charged particles.

• We measured $\mathscr{A}_{det}(K\pi)$ and $\mathscr{A}_{det}(\pi)$ using $D^0 \to K^-\pi^+$ and $D^+ \to K^0_c\pi^+$ decays. From

\mathcal{A}_{det} from D control channels

instrumental asymmetries and forward-backward asymmetry.

- Assume $\mathscr{A}_{CP}(D^0 \to K\pi) = 0$, $\mathscr{A}_{CP}(D^+ \to K_s^0\pi^+) = (-0.41 \pm 0.09)\%$ from PDG.
- (neglect tiny asymmetry induced by K^0 CP-asymmetry).

- Observed charge asymmetries \mathscr{A}_{obs} are due to the combination of CP-violating effects,

Instrumental asymmetry

• For $D^+ \to K_s^0 \pi^+$, $\mathscr{A}_{det}(K_s^0 \pi^+) \simeq \mathscr{A}_{det}(K_s^0) + \mathscr{A}_{det}(\pi^+)$. We assume $\mathscr{A}_{det}(K_s^0) = 0$

Forward-backward production asymmetry

- \mathscr{A}_{FB} contribution due to $\gamma^* Z^0$ interference in $e^+e^- \to c\bar{c}$.
- combining measurement of \mathscr{A}_{obs} in opposite bins of $cos(\theta^*)$:

• \mathscr{A}_{FR} is antisymmetric as function of $cos(\theta^*)$ (angle of D meson production in CM system). https://arxiv.org/ftp/arxiv/papers/1808/1808.10567.pdf

• Assume that \mathscr{A}_{det} is not antisymmetric as function of $cos(\theta^*)$, we can cancel \mathscr{A}_{FR} by

	det =	$\frac{\mathscr{A}_{obs}(cos(\theta^*)) + \mathscr{A}_{obs}(-co)}{2}$	s(θ
Theta			

Sample and selection

Data: $Proc12 + buckets16-25 (189.26 fb^{-1}).$

SignalMC: from MC14ri-a (300 fb^{-1}).

Vertex fit on D: treefit

Applied the latest beam energy and momentum corrections.

Tracks:thetaInCDCAcceptance + Idrl <0.5 + Idzl <3 + chiProb>0 + CDCHits>0

KaonID>0.25 + CMS_p>2.5 GeV/c

$CMS_p>2.5 GeV/c +$ $0.4942 \text{GeV}/c^2 < m(\text{Ks}) < 0.5014 \text{Gev}/c^2 +$ KsSignificanceOfDistance>44.5 + KsChiProb>0

1.86

.88

1.9

.84

<u>Y.8</u>

1.82

1.92

 $D^+ \to K^0_c \pi^+$ Belle II Data 2022 (preliminary) — Total fit $L dt = 189.26 \text{ fb}^{-1}$ $\cdots D \rightarrow K_{s}^{0}\pi$ ---- Background $n_{sig}^{tot} \sim 3.18 \times 10^5$ 1.86 1.88 1.82 1.84 1.9 1.94 $K_{\rm S}^0 \pi$ mass (GeV/c²)

 $K\pi$ mass [GeV/c²]

Determining \mathscr{A}_{det} dependence in data

Study \mathscr{A}_{det} binning the sample in:

- *p*: interaction probabilities with matter depend on momentum;
- $cos(\theta)$: different material budget traversed by the particle;
- CDC hits: tracking and dE/dx resolution depends on number of hits, and these differ on average for track with opposite curvature.
- For $K\pi$, \mathscr{A}_{det} as a function of kaon variables ($\mathscr{A}_{det}(K\pi) \simeq \mathscr{A}_{det}(K) + \mathscr{A}_{det}(\pi)$ and $\mathscr{A}_{dot}(K) \gg \mathscr{A}_{dot}(\pi);$
- For $K^0_{s}\pi$, \mathscr{A}_{det} as a function of pion variable

Split the sample in D^0 and D^0 candidates and fit D mass to compute the signal yield and calculate $\mathscr{A}_{obs} = [N(D^0) - N(D^0)]/[N(D^0) + N(D^0)]$. Subtract \mathscr{A}_{FB} by doing the measurement in opposite bins of $cos(\theta^*)$ and obtain \mathscr{A}_{det} .

These three variables are correlated. Will show the dependence one by one only for illustration.

les (
$$\mathscr{A}_{det}(K_s^0) = 0$$
.).

\mathscr{A}_{det} dependences : $D^0 \to K^- \pi^+$

Check marginal distribution: integrate over $cos_{K}(\theta)$ and K_CDC_hits.

 \mathcal{A}_{det} depends on p_K

MC shown only for comparison.

Check marginal distribution: integrate over $p_{K}(\theta)$ and K_CDC_hits.

\mathscr{A}_{det} dependences : $D^0 \to K^- \pi^+$

The discrepancy between data and MC is known and it is due to a drift time miscalibration in the CDC simulated in MC. 9

Integrate over all kinematic variables.

Strong dependence of \mathscr{A}_{det} on KCDChits.

Strategy to evaluate \mathscr{A}_{det} for the analyses

- \mathscr{A}_{det} is sample-dependent: different values according to different kinematics and number of CDChits of a track.
- might differ from those of our control channel.
- Apply weights to correct the distributions of the control channel such that they match those of any given B decay:
 - Split the control channel in bins of CDChits and in each bin:

 - B. Determine \mathscr{A}_{det} on the corrected-sample.
 - (from data).
- Will show a closure test in MC that validates the method.

• Need to consider to $(p, cos(\theta), CDChits)$ distributions of kaon and pion in decays, which

A. Correct the $(p, cos(\theta))$ distributions of the control channel (weight from MC);

2. Average the \mathscr{A}_{det} values considering the CDChits distribution of the B decay

$\mathscr{A}_{det}(K\pi)$ closure-test with MC

- Take as example $B^0 \to K\pi$ decays. Standard selections on tracks, with a tight cut on continuum-suppression BDT (CS>0.95), and kaonID>0.25. Known value of $\mathscr{A}_{det}(K\pi) = 0.0012 \pm 0.0015$ in MC: this is the target.
- Consider $D^0 \rightarrow K\pi$ control channel (CS>0.50, KaonID>0.25). Measured $\mathscr{A}_{det}(K\pi) = -0.0076 \pm 0.0007.$
- Different values as expected since p_K , $cos_K(\theta)$ and CDChits(K) differs:

- The points are placed at the average of the CDChits distribution in the bin: it might differs for B^0 and D^0 (before the correction).

• Average of the $\mathcal{A}_{det}(K\pi)$ values from corrected $D^0 \to K\pi$ sample, considering CDChits distribution of $B^0 \to K\pi$: 0.0015 ± 0.0007 in agreement with target 0.0012 ± 0.0015 • We checked the procedure for different PID and CS selections and get expected results.

 \mathscr{A}_{det} dependences : $D^+ \to K_s^0 \pi^+$

Check marginal distribution: integrate over $cos_{\pi}(\theta)$ and pi_CDC_hits.

Observe soft \mathscr{A}_{det} dependencies as a function of $p_{\pi}(\theta)$ and $cos_{\pi}(\theta)$.

Check marginal distribution: integrate over $p_{\pi}(\theta)$ and pi_CDC_hits.

\mathscr{A}_{det} dependences : $D^+ \to K_s^0 \pi^+$

Integrate over all kinematic variables.

Strong dependence of \mathscr{A}_{det} on piCDChits.

 $\mathscr{A}_{det}(\pi)$ from $D^+ \to K^0_c \pi^+$

- used to compute $\mathcal{A}_{det}(K\pi)^{a}$.
- using this control channel is ongoing.
- We can also use $D^0 \to K^- \pi^+$ and D^+
 - 1. Given $(p_K, cos_K(\theta), KnCDChits)$ distributions of a B decay, we can compute $\mathscr{A}_{det}(K\pi)$ using $D^0 \to K^-\pi^+$ channel;
 - 2. Weight the π distributions of $D^+ \to K_c^0 \pi^+$ to match those of $K\pi$;
 - 3. Compute $\mathscr{A}_{det}(K) = \mathscr{A}_{det}(K\pi)$ -

• The method to compute $\mathscr{A}_{det}(\pi)$ using $D^+ \to K^0_s \pi^+$ for a given decay is the same

• A closure-test to compute $\mathscr{A}_{det}(\pi)$ for $B^+ \to \rho^+(\to \pi^+\pi^0)\rho^0(\to \pi^+\pi^-)$ decay

$$\rightarrow K_s^0 \pi^+$$
 to compute $\mathscr{A}_{det}(K)$:

$$-\mathscr{A}_{det}(\pi).$$

Summary

- Measured \mathscr{A}_{det} for $K\pi$ and π , with a precision of $\mathcal{O}(1^{o}/_{oo})$ and $\mathcal{O}(3^{o}/_{oo})$ using $D^{0} \to K^{-}\pi^{+}$ and $D^{+} \to K_{s}^{0}\pi^{+}$.
- First study of the dependence of \mathscr{A}_{det} . Found large dependence as a function of p, $cos(\theta)$ and CDChits of the tracks.
- Developed a method to compute \mathscr{A}_{det} from control channel for any given decay, taking into account these dependences.
- Will release a tool for analysts and document everything in a supporting note.
- Will be used in analyses targeting ICHEP, e.g. GLW with $B^+ \to D^0 h^+$, and measurement of \mathscr{A}_{CP} in $B^+ \to h^+ \pi^0$ and $B^0 \to K^* \pi^0$ decays.

Backup

 \mathscr{A}_{det} dependences : $D^0 \to K^- \pi^+$

Interaction probabilities between K^+/K^- depend on momentum.

 \mathscr{A}_{det} dependences : $D^0 \to K^- \pi^+$

 \mathcal{A}_{det} depends on $cos_{K}(\theta)$

different material budget traversed by particle.

 \mathscr{A}_{det} dependences : $D^0 \to K^- \pi^+$

The circled points represent the \mathscr{A}_{det} values in the ϕ_K region in which there are two layers of PXD (more material budget traversed by particle). In any case, we assume no dependence on ϕ_{K} .

Integrate over all kinematic variables and K_CDC_hits.

