

Toward $\mathcal{B}(B \rightarrow D^{o}\rho)$

TS analysis meeting may 27, 2022

Mirco Dorigo Riccardo Manfredi <u>Olga Werbycka</u>

Overview

- Changes in the preselection cuts
- Previous selection results
- New selection + results of 3D optimization
- BB-bar background composition
- Summary

Preselection

Made on MC14 (200 fb⁻¹)

General cuts:

- → Mbc > 5.27 GeV
- → 1.85 < m(Kπ) < 1.88 (~3 σ) GeV
- → binary kaon PID from $D^0 > 0.2$
- → binary pion PID from $D^0 < 0.8$
- → binary pion PID from ρ < 0.8
- → -0.15 < ΔE < 0.15 GeV
- → 0.12 < m(π^0) > 0.145 (2 σ) GeV
- → 0.45 < m(ρ) > 1.25 GeV
- → photon0E >0.04
- → photon1E>0.05

 π^0 candidates are taken from *stdPiOs_winter2020* list

new or modified

The vertex of the signal *B* candidate was reconstructed using *tree fitter*

Photon energy optimization

m(p) signal and background after applying photon/pi^o cuts

53% of background is rejected

Old Selection criteria

- R2 < 0.28 \rightarrow
- thrustBm > 0.83 \rightarrow
- thrustBm < 0.9 \rightarrow
- •
- 1D FOM based optimisation of $\cos\Theta_{\pi\pi0}$, cuts of R2 and thrustBm based on the shape only

cosΘ_{ππ0} < 0.62

Composition	Fraction
Signal	0.59
Continuum	0.13
BB-bar bkg	0.28

Result of the topology analysis

The most frequent B- decays go through $D^{*0} \rightarrow D^0 pi^0$

Selection variables

Focus on three variables for background suppression: $\cos \Theta_{\pi\pi0}$, R2 and D^0_{mom} :

New selection

Results of 3D optimisation of $cos\Theta_{\pi\pi0}$ vs R2 vs D^{0}_{mom} ;

Result

Composition	Fraction
Signal	0.48
Continuum	0.21
SCF	0.16
BB-bar bkg	0.15

Result (2)

shapes between the 4 components look different in cosTheta_rho. We can use it's discrimination power in a 3D fit to (deltaE, m(rho), cosHel).

BB-bar background composition

Summarizing table for MC 200 fb⁻¹

	Before preselection	After preselection	After preselection + selection
Signal eff (ε)	~41%	~24%	~17%
Background rejection	-/-	99.56%	99.94%

We expect to see in data (200 fb⁻¹) (events):

$$N_{
m signal} \, = L imes \epsilon \, = \, 19700$$

Candidate multiplicity was studied on a small generic MC dataset after applications of all selection criteria

ΔE after one candidate selection

Composition	Fraction
Signal	0.52
Continuum	0.22
SCF	0.10
BB-bar bkg	0.16

D^{*°} veto

D^{*o} veto: π^{o} momenta

Fits for SCF and BBbar of deltaE (200 fb-1)

Fits for signal and continuum of deltaE (200 fb-1)

Simultaneous fit of deltaE

Simultaneous fit for 200fb⁻¹ Data Simultaneous fit Signal Continuum BBbar background SCF 2000 1000 1 1 1 1 -8.15 0.15 ∆E (GeV) -0.1-0.050.05 0.1 n A RecPlot of TalE (GeV) 50

TOYs for Simultaneous fit (Signal and Continuum)

TOYs for Simultaneous fit (BBbar and SCF)

Backup

Conclusions

- Additional pre-selection cuts were taken into account
- New optimized selection criteria were applied
- > Analysis of the BB-bar background composition was performed
- With new cuts we are able to keep higher reconstruction efficiency (~20%) with smaller background fraction

To do:

- > Determine the $B \rightarrow D\pi\pi^0$ signal yield by fitting the deltaE distribution.
- > Will inspect m($\pi\pi^0$) mass to separate ρ and non- ρ contribution to the signal
- > Will consider if using also $\cos\theta_{\pi\pi}$ in the fit.

Delta E with harder cut on p(D°)>2.1

Composition	Share
Signal	0.49
Continuum	0.22
SCF	0.16
BB-bar bkg	0.13

Possible cut on the angle difference between 2 photons

