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Overview

* Detection of photons for quantum applications

e Semiconductor based photons

e Superconducting single photon detectors

e Homodyne detection

* Improving resolution with quantum state of light



What do we use photons for?

Quantum communication
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Generation of photons

* Probabilistic sources * Deterministic sources

Parametric down conversion Quantum emitters
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Silicon Single photon detectors (Si-SPD)

* A photodiode operating in the Geiger mode

* Not good for infrared (A>1000 nm) because
of the energy gap of Si (E_,,= 1.12 eV)

e Afterpulse (100 ns to 500 ns)

 Detection efficiency 65% (@600 nm)
e around 20 dark counts per second
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Array of single photon detectors (Si)

* They can be fabricate in arrays

* Integrated with fast time stamping electronics

Images are a courtesy of Prof. Charbon, EPFL



InGaAs Single photon detectors (InGaAs-SPD)

e Similar to Si-SPD but with general worst specs
* Good for infrared (A>1000 nm)

* Higher afterpulse probability (1us deadtime)
* Detection efficiency 25% (@1550 nm)

e around 800 dark counts per second at 10%
efficiency

* It does not resolve the number of photons




Superconducting single photon detectors

* They represent the state of the art in single photon
detection

Superconducting Nanowire
Single-Photon Detector

* A superconducting nanowire is driven close to its
critical current
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Superconducting single photon detectors

* Made of a superconducting nanowire (4-6 nm
thickness and 500 nm width)

 Material: NbN, NbTiN and Wsi

e Efficiency >85% @1550nm, Low timing jitter: <15
ps, High count rate: >80 MHz, Low dark count
rate: <10 Hz

* Detect photons up to 10 um wavelength (APL
Photonics 6, 056101, 2021)

https://www.idquantique.com/quantum-sensing/products/id281-snspd-series/



Integrating the SNSPD with optical waveguides

* Best way to bring the efficiency close to 100%
* Photons are absorbed by evanescent coupling

* Longer interaction length

Contact pads
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Multiplexing of SNSPDs

* Multiple detectors can be integrated on a waveguide
* Probabilistic photon number resolving capability
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Homodyne detection

e Quantum Signal (QS) is mixed with a local oscillator (LO) on a
balanced beam splitter

* Measures the difference in current produced by the two
photodiodes.
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Quantum enhanced measurement

» Squeezed light used for enhancing the sensitivity of LIGO (up to 2.15 dB)
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A new INFN experiment: UNIDET
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Figure 2 a) Schematic of the integrated PNR to develop 1n this project showing a series of N pixels
composed by a NDN nanowire (80 nm width) and an AuPd on-chip parallel resistance (Rp=20 Q
value). b) Field mntensity for the first TE mode propagating in the waveguide where the light
absorption in each NbN nanowire element 1s at 3. 4%. ¢) Schematic of the hvbrid detector.



Conclusion

* Overview of the main detection strategies for quantum technology
with photons

* Avalanche photodiodes

e Superconducting single photon detectors and photon number
resolving detectors

* Homodyne detection and quantum enhanced measurement



