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QUANTUM SENSING: a definition
“Quantum sensing” describes the use of a quantum system, quantum properties or quantum phenomena to perform a
measurement of a physical quantity
Rev. Mod. Phys. 89, 035002 (2017)

1. Use of a quantum object to measure a physical quantity
(classical or quantum). The quantum object is characterized
by quantized energy levels, i.e. electronic, magnetic or
vibrational states of superconducting or spin qubits, neutral
atoms, or trapped ions.

2. Use of quantum coherence (i.e., wave-like spatial or
temporal superposition states) to measure a physical quantity

3. Use of quantum entanglement to improve the sensitivity or
precision of a measurement, beyond what is possible
classically.
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are

V||(t) = Vz(t) ,

V�(t) = Vx(t) + iVy(t), (7)

where the z direction is defined by the qubit’s quantiza-
tion axis. The corresponding signal Hamiltonian is

ĤV (t) = �Re[V�(t)]�̂x + �Im[V�(t)]�̂y + �V||(t)�̂z . (8)

3. Control Hamiltonian

For most quantum sensing protocols it is required to
manipulate the qubit either before, during, or after the
sensing process. This is achieved via a control Hamilto-
nian Ĥcontrol(t) that allows implementing a standard set
of quantum gates (Nielsen and Chuang, 2000). The most
common gates in quantum sensing include the Hadamard
gate and the Pauli-X and Y gates, or equivalently, a set of
�/2 and � rotations (pulses) around di�erent axes. Ad-
vanced sensing schemes employing more than one sensor
qubit may further require conditional gates, especially
controlled-NOT gates to generate entanglement, Swap
gates to exploit memory qubits, and controlled phase
shifts in quantum phase estimation. Finally, the control
Hamiltonian can include control fields for systematically
tuning the transition frequency �0. This capability is
frequently exploited in noise spectroscopy experiments.

B. The sensing protocol

Quantum sensing experiments typically follow a
generic sequence of sensor initialization, interaction with
the signal, sensor readout and signal estimation. This
sequence can be summarized in the following basic pro-
tocol, which is also sketched in Fig. 2:

1. The quantum sensor is initialized into a known ba-
sis state, for example |0�.

2. The quantum sensor is transformed into the desired
initial sensing state |�0� = Ûa|0�. The transforma-
tion can be carried out using a set of control pulses
represented by the propagator Ûa. In many cases,
|�0� is a superposition state.

3. The quantum sensor evolves under the Hamiltonian
Ĥ [Eq. (2)] for a time t. At the end of the sensing
period, the sensor is in the final sensing state

|�(t)� = ÛH(0, t)|�0� = c0|�0� + c1|�1� , (9)

where ÛH(0, t) is the propagator of Ĥ, |�1� is the
state orthogonal to |�0� and c0, c1 are complex co-
e�cients.
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6. Repeat and average

“0” with probability 
“1” with probability
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FIG. 2 Basic steps of the quantum sensing process.

4. The quantum sensor is transformed into a superpo-
sition of observable readout states |�� = Ûb|�(t)� =
c�
0|0�� + c�

1|1��. For simplicity we assume that the
initialization basis {|0�, |1�} and the readout basis
{|0��, |1��} are the same and that Ûb = Û†

a , but this
is not required. Under these assumptions, the co-
e�cients c�

0 � c0 and c�
1 � c1 represent the overlap

between the initial and final sensing states.

5. The final state of the quantum sensor is read
out. We assume that the readout is projective,
although more general positive-operator-valued-
measure (POVM) measurements may be possi-
ble (Nielsen and Chuang, 2000). The projective
readout is a Bernoulli process that yields an answer
“0” with probability 1� p� and an answer “1” with
probability p�, where p� = |c�

1|2 / p is proportional
to the measurable transition probability,

p = 1 � |c0|2 = |c1|2 (10)

that the qubit changed its state during t. The bi-
nary answer is detected by the measurement appa-
ratus as a physical quantity x, for example, as a
voltage, current, photon count or polarization.

Steps 1-5 represent a single measurement cycle. Because
step 5 gives a binary answer, the measurement cycle
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quantum sensing experiments typically follow a generic sequence of processes known as:

1. sensor initialization into a known basis state

2. interaction with the signal

3. sensor readout

4. signal estimation
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Ĥ [Eq. (2)] for a time t. At the end of the sensing
period, the sensor is in the final sensing state
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state orthogonal to |�0� and c0, c1 are complex co-
e�cients.

1. Initialize

5. Project, Readout

3. Evolve for time 

4. Transform

2. Transform

6. Repeat and average

“0” with probability 
“1” with probability

7. Estimate signal

FIG. 2 Basic steps of the quantum sensing process.

4. The quantum sensor is transformed into a superpo-
sition of observable readout states |�� = Ûb|�(t)� =
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quantum sensors are extremely sensitive to disturbances

=) they have the potential to become extraordinary measuring instruments

in specific application areas
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what about particle physics?
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FIG. 1. Range of available dark matter candidates. Current observations allow for dark matter to
consist of quanta with an enormous range of masses. Here we classify these candidates as particle-
like when m & 1 eV, and ultralight, wave-like dark matter when m . 1 eV. A few prototypical
models are listed as examples.

II. MOTIVATIONS FOR MECHANICAL SENSORS

The present landscape of viable dark matter candidates is enormous, leading to a wide
variety of potential experimental signatures. Dark matter particles could range in mass
from 10�22 eV up to hundreds of solar masses, a range of some 90 orders of magnitude.1

Moreover, dark matter could interact with the standard model through many possible in-
teractions, although perhaps only through gravity. To span this diverse range of possible
models, di�erent regions of parameter space will require di�erent detector architectures and
measurement techniques. In particular, for models interacting with the standard model only
through mass or other extensive quantities such as nucleon number, massive mechanical sen-
sors may be required. Mechanical sensing technologies o�er an extensive set of platforms,
as discussed in section IV, and thus have the potential to search for a wide range of such
dark matter candidates in regions of parameter space that are complementary to existing
searches.

The ability to monitor a large number of atoms in aggregate o�ers two key advantages over
other approaches. The first advantage is the large volume integration of any putative dark
matter signal. Any dark-visible interactions are necessarily tiny, so using a large volume (or a
large mass of target nuclei or atoms, for models that can resolve the underlying substructure
of the masses) is key to meaningful detection prospects. The second advantage is that long-
wavelength signals can be integrated coherently across the full device, leading to greatly
enhanced sensitivities. Such coherent detection has applications in the search for signals
from wave-like dark matter signals like the axion or other ultralight bosons, as well as in
the case of impulses delivered with extremely small momentum transfers. In section III,
we give some examples of dark matter models leading to these types of signals, and discuss
prospects for their detection with mechanical sensors.

III. DETECTION TARGETS AND TECHNIQUES

Possible signals of dark matter are controlled by a few key parameters. Astrophysical ob-
servations tell us that the dark matter mass density in our neighborhood is � ⇠ 0.3 GeV/cm3

1 In this paper, we use natural units ~ = c = 1 to quote particle physics quantities like masses and momenta.

� ' 10 eV is considered a fundamental watershed

� quantum sensing ! significant opportunities for wave-like DM and in the 10 keV-1MeV range

Experimental methods
� axion/dark photon haloscopes ! well established field

� collective excitations in solid state materials (magnons, phonons) ! only recently proposed, very promising



DARK MATTER WAVES

particle , wave
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For light and massless particles the wavelength can be large.

ma ' h⌫a 1µeV $ 0.25 GHz
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If these particles are also bosons, many particles can occupy the same state

⇢DM = 0.3 � 0.4 GeV cm�3 =) na ⇠ 3 ⇥ 1012(10�4eV/ma) axions/cm3

it’s a macroscopic wave-like behavior



AXION VS WIMP DETECTION

WIMP [1-100 GeV]
� number density is small
� tiny wavelength
� no detector-scale coherence

=) observable: scattering of
individual particles

AXION [mA ⌧ eV]
� number density is large (bosons)
� long wavelength
� coherence within detector

=) observable: classical, oscillating,
background field



HALOSCOPE - resonant search for axion DM in the Galactic halo

� original proposal by P. Sikivie (1983)

� search for axions as cold dark matter constituent: SHM from ⇤CDM, local DM density ⇢
! signal is a line with 10�6 relative width in the energy(! frequency) spectrum

� an axion may interact with a strong ~B field to produce a photon of a specific frequency (! ma)



HALOSCOPE - resonant search for axion DM in the Galactic halo

1. microwave cavity for resonant amplification
-think of an HO driven by an external force-

2. with tuneable frequency to match the axion mass

3. the cavity is within the bore of a SC magnet

4. cavity signal is readout with a low noise receiver

5. cavity and receiver preamplifier are kept at base temperature
of a dilution refrigerator (10 � 50) mK

2

cavity coupled to a JPA and immersed in a static mag-
netic field of 8.1 T, all cooled down with a dilution re-
frigerator at a working temperature T ⇠ 150 mK. These
features improve the precedent work of Ref. [16], allow-
ing us to exclude values of ga�� > 0.639 · 10�13 GeV�1

at 90% C.L.
In Sec. II we describe the experimental setup along

with its calibration, while in Sec. III we present the re-
sults and data analysis, and prospects for QUAX–a� in
Sec. IV.

II. EXPERIMENTAL SETUP

FIG. 1. View of the QUAX�a� dilution refrigerator insert,
instrumented with resonant cavity (at the bottom) and ampli-
fication chain. Behind, the 8.1 T magnet with its countercoil
is visible.

The haloscope, assembled at Laboratori Nazionali di
Legnaro (LNL), is composed by a cylindrical OFHC-Cu
cavity (Fig. 1), with inner radius of 11.05 mm and length
210 mm, inserted inside the 150 mm diameter bore of an
8.1 T superconducting (SC) magnet of length 500 mm.
The total volume of the cavity is V = 80.56 cm3. The
whole system is hosted in a dilution refrigerator with
base temperature of 90 mK. Each cavity endplate hosts
a dipole antenna in the holes drilled on the cavity axis.
The cavity was treated with electrochemical polishing

to minimize surface losses. We measured the resonant
peak of the TM010 mode at 150 mK and magnet on
with a Vector Network Analyzer obtaining the frequency
�c= 10.4018 GHz and an unloaded quality-factor Q0=
76,000 in agreement with expectations from simulation
performed with the ANSYS HFSS suite [31]. During
data-taking runs, the cavity was critically coupled to the
output radiofrequency (RF) line and the loaded quality-
factor was measured to be about QL= 36,000.

FIG. 2. Schematics of the experimental apparatus. The mi-
crowave cavity (orange) is immersed in the uniform magnetic
field (blue shaded region) generated by the magnet (crossed
boxes). A1 and A2 are the cryogenic and room-temperature
amplifiers, respectively. The JPA amplifier has three ports:
signal (s), idler (i), and pump (p). Superconducting cables
(red) are used as transmission lines for RF signals from 4 K
stage to 150 mK stage. Thermometers (red circled T) are
in thermal contact with the resonant cavity and the signal
port on the JPA. Attenuators are shown with their reduc-
tion factor in decibels. The horizontal lines (blue) identify
the boundaries of the cryogenic stages of the apparatus, with
the cavity enclosed within the 150 mK radiation shield. The
magnet is immersed in liquid helium.

The RF setup is the same as our previous measure-
ment [15] and is shown in Fig. 2. It consists of four RF
lines used to characterize and measure the cavity sig-



weak interactions with SM particles =) 10�22 W signal power ! .Hz signal rate at 10 GHz

Josephson Parametric Amplifiers (JPAs) introduce the lowest level of noise, set by the laws of quantum
mechanics (Standard Quantum Limit noise)

Tsys = Tc + TA
Tc cavity physical temperature
TA effective noise temperature of the amplifier

kBTsys = h⌫
✓

1
eh⌫/kBT � 1

+
1
2

+ Na

◆

ADMX: Axion Dark Matter eXperiment

at 10 GHz frequency
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STANDARD QUANTUM LIMIT IN LINEAR AMPLIFICATION

Any narrow bandwidth signal �⌫c ⌧ ⌫c can be written as:

V(t) = V0[X1 cos(2⇡⌫ct) + X2 sin(2⇡⌫ct)]
= V0/2[a(t) exp(�2⇡i⌫ct) + a⇤(t) exp(+2⇡i⌫ct)]

X1 and X2 signal quadratures
a, a⇤ ! to operators a, a† with [a, a†] = 1 and N = aa†
Hamiltonian of the cavity mode is that of the HO:

H = h⌫c

✓
N +

1
2

◆

Alternatively, with [X1,X2] = i
2 :

H =
h⌫c

2
(X2

1 + X2
2)

kTsys = h⌫cNsys =
⇣

1
eh⌫/kT�1

+ 1
2 + NA

⌘

Caves’ Theorem: NA > 1/2

The quantum noise is a consequence of the base
that we want to use to measure the content of the
cavity.
A linear amplifier measures the amplitudes in
phase and in quadrature, while a photon counter
measures N.



BEYOND SQL: PHOTON COUNTING

� Photon counting is a game changer at high frequency and
low temperatures: in the energy eigenbasis there is no
intrinsic limit (SQL)

� unlimited (exponential) gain in the haloscope scan rate
compared to linear amplification at SQL:

Rcounter

RSQL
⇡

QL

Qa
e

h⌫
kBT

plot example at 10 GHz, where TSQL = h⌫/kB ! 0.5 K

at 7 GHz, 40 mK =) 103 faster than SQL linear amplifier readout



SMPDS FOR ITINERANT PHOTONS

A Single Photon Microwave Counter (SMPD) architecture is significantly different whether it is meant for cavity
photons or itinerant (traveling) photons.
We are interested in the itinerant version due to the magnetic fields involved.

SMPD

� detection of individual microwave photons is a challenging
task because of theirlow energy ⇠ 10�5 eV

� a solution: use “artificial atoms” introduced in circuit QED,
their transition frequencies lie in the ⇠GHz range

� or: rely on a single current-biased Josephson junction



SUPERCONDUCTING CIRCUITS and the JOSEPHSON JUNCTION

SC circuits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated
circuits.

Devices useful for circuit QED are fabricated starting from a non-dissipative, non-linear element: the Josephson
tunnel junction



SUPERCONDUCTING CIRCUITS



ARTIFICIAL ATOMS: the TRANSMON QUBIT

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 6, 021318 (2019); doi: 10.1063/1.5089550 6, 021318-3

Published under license by AIP Publishing

E01 = E1 � E0 = ~!01 6= E02 = E2 � E1 = ~!21
! good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:
H = �~d · ~E(t), with E(t) = E0 cos!01t
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pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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E01 = E1 � E0 = ~!01 6= E02 = E2 � E1 = ~!21
! good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:
H = �~d · ~E(t), with E(t) = E0 cos!01t

toolkit: capacitor, inductor, wire (all SC)
!01 = 1/

p
LC ⇠ 10 GHz ⇠ 0.5 K

! simple LC circuit is not a good two-level atom
approximation
IJ = Ic sin� V = �0

2⇡
@�
@t

V = �0
2⇡

1
Ic cos �

@IJ
@t = LJ

@IJ
@t

LJ = �0
2⇡

1
Ic cos � NL Josephson inductance



quantum engineers and particle physicists joining efforts

A practical transmon-based counter has been recently developed (Quantronics group CEA, Saclay) that we will
apply to haloscope signal readout.

R. Lescanne et al, Phys. Rev. X 10, 021038 (2020)
E. Albertinale et al, Nature 600, 434 (2021)



transmon-based SMPD

R. Lescanne et al, Phys. Rev. X 10, 021038 (2020)
E. Albertinale , Nature 600, 434 (2021)

� a three-step process repeated several times
� qubit reset (R) performed by turning on the pump pulse

+ a weak resonant coherent pulse to the waste port
� detection (D) step with the pump pulse on
� measurement (M) step probes the dispersive shift of the

buffer resonator to infer the qubit state



PILOT SMPD-HALOSCOPE EXPERIMENT

� copper cavity sputtered with NbTi
magnetron sputtering in INFN-LNL

� right cylinder resonator, TM010 mode
⌫c ⇠ 7.3 GHz to match the new generation SMPD bandwidth
(7.280 - 7.380) GHz

� system of sapphire triplets to tune the cavity frequency
⇠ 10 MHz tuning without impacting Q

� nanopositioner to change the sapphire rods position



the dark count is a inhomogeneous Poisson process

8 Darkcount and preliminary tests analysis

8.1 Dark counts rate

When no signal is applied, the SMPD has a residual detection rate referred to as dark count rate �dc.

In previous measurements, it has been observed that this rate depends on the system temperature and

the data reported in the following refers to an operation in the optimal case in which the system is

thermalized at the dilution refrigerator base temperature of 10mK. Figure 42 shows a typical sequence

of dark count clicks and the dark count rate measured in an 8-hour-long acquisition. �dc is about 100 Hz

and clearly not stationary.

Figure 42: (a) Time series of the dark count rate �dc measured in 10 s-duration intervals in an almost
8-hour-long acquisition. (b) A typical sequence of clicks collected in 0.5 s. (c) dark counts rate computed
on 1 s-duration intervals for the 300 s time window highlighted in (a).

As shown in Figure 39 (c),when the pump frequency is detuned from the frequency matching condition

(Equation 7.2) the dark count rate decreases. This shows that the counts are related to the presence of

photons in the bu�er resonator. These photons come from noise coupled to the bu�er line and from the

thermal excitation of the cavity, of the transmission line and of the bu�er resonator.

To define an equivalent noise temperature of the bu�er line we can consider the scheme in Figure 43.

A load at the equivalent temperature Tsys emits itinerant photons on the bu�er line. The cavity is

represented as a lossless cavity coupled to a load at the cavity temperature. In this model we assume a

dark count free SMPD.

The noise spectrum can be written as

SN (�) = h� [T (�)n(Tcav) + R(�)n(Tsys)] (8.1)

with T = |S21|2, R = |S22|2 the cavity transmission and reflection coe�cients, and n is the average

occupation number at a given temperature.

n(T ) =
1

eh�/kBT � 1
⇠

kBT�h�
e� h⌫

kBT (8.2)

58



REAL SMPDS HAVE FINITE EFFICIENCY ⌘ AND DARK COUNTS �dc > �sig

�Ndc =
p

�dc⌧ uncertainty in the number of dark counts collected in an integration time ⌧

⌃ =
⌘�sig⌧
p

�dc⌧
= ⌘�sig

r
⌧

�dc
the dark count contribution to the fluctuations dominates

Rcounter =
�⌫c

⌧
=

�⌫c⌘2P2
a��

h2⌫2⌃2�dc
Rlin =

Qa

Qc

✓
Pa��

⌃ kBT

◆2
scan rates lin. amp. and counter

Rcounter

Rlin
=

✓
kBTsys

h⌫

◆2 ⌘2�⌫a

�dc

quantum advantage can be demonstrated even with high dark count rates �dc
⌘ ⇡ 0.4, �dc ⇡ 100 Hz =) potential improvement of a factor 11 compared to SQL scan rate



SCAN RATE

For a target sensitivity ga�� , the parameter space scan rate is given by:

df
dt
/

B4 V2
eff QL

Tsys

A haloscope optimized at best goes at:
✓

df
dt

◆

KSVZ
⇠ GHz/year

✓
df
dt

◆

DFSZ
⇠ 20 MHz/year ��

Take-home: to probe the mass range (1-10) GHz at DFSZ sensitivity would require
& 100 years with 4-5 complementary haloscopes


