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QUANTUM SENSING: a definition

“Quantum sensing” describes the use of a quantum system, quantum properties or quantum phenomena to perform a

measurement of a physical quantity
Rev. Mod. Phys. 89, 035002 (2017)

1. Use of a quantum object to measure a physical quantity
(classical or quantum). The quantum object is characterized
by quantized energy levels, i.e. electronic, magnetic or
vibrational states of superconducting or spin qubits, neutral
atoms, or trapped ions.

2. Use of quantum coherence (i.e., wave-like spatial or
temporal superposition states) to measure a physical quantity

3. Use of quantum entanglement to improve the sensitivity or
precision of a measurement, beyond what is possible
classically.
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BASIC PROTOCOL
quantum sensing experiments typically follow a generic sequence of processes known as:

1. Initialize

1. sensor initialization into a known basis state

2. Transform
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3. Evolve for time t

2. interaction with the signal %) = 04 (0,0lwo)

4. Transform
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3. sensor readout 5. Project, Readout
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6. Repeat and average
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4. signal estimation




quantum sensors are extremely sensitive to disturbances

— they have the potential to become extraordinary measuring instruments

in specific application areas
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what about particle physics?
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— quantum sensing — significant opportunities for wave-like DM and in the 10 keV-1MeV range
Experimental methods

— axion/dark photon haloscopes — well established field

— collective excitations in solid state materials (magnons, phonons) — only recently proposed, very promising



DARK MATTER WAVES
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If these particles are also bosons, many particles can occupy the same state
pom = 0.3 — 0.4GeVem—3 — ng ~ 3 X 1012(10*4eV/m,1) axions/cm?

it’s a macroscopic wave-like behavior



AXION VS WIMP DETECTION

WIMP [1-100 GeV]

— number density is small

— tiny wavelength

— no detector-scale coherence

= observable: scattering of

individual particles

AXION [m, < eV]

— number density is large (bosons)
— long wavelength

— coherence within detector

= observable: classical, oscillating,
background field



HALOSCOPE - resonant search for axion DM in the Galactic halo

— original proposal by P. Sikivie (1983)

— search for axions as cold dark matter constituent: SHM from Acpyy, local DM density p
— signal is a line with 107 relative width in the energy(— frequency) spectrum

— an axion may interact with a strong E field to produce a of a specific frequency (— #1,)




HALOSCOPE - resonant search for axion DM in the Galactic halo

1. for resonant amplification

2. to match the axion mass
3. the cavity is within the bore of a SC magnet
4. cavity signal is readout with a low noise receiver

5. cavity and receiver preamplifier are kept at base temperature
of a dilution refrigerator (10 — 50) mK




weak interactions with SM particles => 10> W signal power +— <Hz signal rate at 10 GHz
mechanics (Standard Quantum Limit noise)

Josephson Parametric Amplifiers (JPAs) introduce the lowest level of noise, set by the laws of quantum
Tsys =Tc+Tx

T cavity physical temperature

T, effective noise temperature of the amplifier
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at 10 GHz frequency
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STANDARD QUANTUM LIMIT IN LINEAR AMPLIFICATION

Any narrow bandwidth signal Av, < v, can be written as:

kTsys = thNsys = (m + % + NA)

V(t) Vo[Xq cos(2muct) 4+ Xp sin(2mvet)]

Vo/2[a(t) exp(—2mivct) 4+ a* (t) exp(+2mivet)]

Caves’ Theorem: Ny > 1/2

Xj and X; signal quadratures
a,a* — to operators a,a’ with [1,at] = 1 and N = aat

Hamiltonian of the cavity mode is that of the HO: o
The quantum noise is a consequence of the base

1 that we want to use to measure the content of the
H = hu, (N + 7) cavity.
2 A linear amplifier measures the amplitudes in
phase and in quadrature, while a photon counter
Alternatively, with [X;, Xo] = % measures N.

2= hve (XZ +32)



BEYOND SQL: PHOTON COUNTING
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SMPDS FOR ITINERANT PHOTONS

A Single Photon Microwave Counter (SMPD) architecture is significantly different whether it is meant for cavity
photons or itinerant (traveling) photons.

We are interested in the itinerant version due to the magnetic fields involved.

— detection of individual microwave photons is a challenging
task because of theirlow energy ~ 10~5eV

— a solution: use “artificial atoms” introduced in circuit QED,
their transition frequencies lie in the ~GHz range

— or: rely on a single current-biased Josephson junction
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SUPERCONDUCTING CIRCUITS and the JOSEPHSON JUNCTION
circuits.

Central conductor
ground plane l

ground plane
Substrate

SC circuits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated
H field
(Silicon/Sapphire/...)

E field
tunnel junction
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tunnel barrier ~ nm

Devices useful for circuit QED are fabricated starting from a non-dissipative, non-linear element: the Josephson
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ARTIFICIAL ATOMS: the TRANSMON QUBIT
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— good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:

H=-d- E(t), with E(t) = Eg cos wy £




ARTIFICIAL ATOMS: the TRANSMON QUBIT
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quantum engineers and particle physicists joining efforts

apply to haloscope signal readout.

A practical transmon-based counter has been recently developed (Quantronics group CEA, Saclay) that we will
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R. Lescanne ef al, Phys. Rev. X 10, 021038 (2020)
E. Albertinale et al, Nature 600, 434 (2021)

a Quantronics Group

Research Group in Quantum

Electronics, CEA-Saclay, France




transmon-based SMPD
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a three-step process repeated several times

R. Lescanne et al, Phys. Rev. X 10, 021038 (2020) — qubit reset (R) performed by turning on the pump pulse
E. Albertinale , Nature 600, 434 (2021) + a weak resonant coherent pulse to the waste port
— detection (D) step with the pump pulse on
@ ?“a',‘ﬁmp'“is?m“p — measurement (M) step probes the dispersive shift of the
Electronics, CEA-Saclay, France

buffer resonator to infer the qubit state




PI1LOT SMPD-HALOSCOPE EXPERIMENT

® copper cavity sputtered with NbTi
magnetron sputtering in INFN-LNL

©® right cylinder resonator, TMy;p mode
ve ~ 7.3 GHz to match the new generation SMPD bandwidth
(7.280 - 7.380) GHz

© system of sapphire triplets to tune the cavity frequency
~ 10 MHz tuning without impacting Q

® nanopositioner to change the sapphire rods position




the dark count is a inhomogeneous Poisson process
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REAL SMPDS HAVE FINITE EFFICIENCY 7 AND DARK COUNTS I'y. > T'gig

ONg. = /T4t  uncertainty in the number of dark counts collected in an integration time 7
nrsigT T e . .
Y= =nlsigy/ 5 the dark count contribution to the fluctuations dominates
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quantum advantage can be demonstrated even with high dark count rates Iy,

1n =~ 0.4, T'y. =~ 100 Hz = potential improvement of a factor 11 compared to SQL scan rate



SCAN RATE

For a target sensitivity g,,,, the parameter space scan rate is given by:
df B*V? B* Ve Qu
ar > Tsys

A haloscope optimized at best goes at:

<df> ~ GHz/year
at ) svz

<df> ~ 20MHz/year oJO)
dt ) prsz

Take-home: to probe the mass range (1-10) GHz at DFSZ sensitivity would require
2, 100 years with 4-5 complementary haloscopes



