

Joint project of INFN Napoli and Roma Tre

New Resistive Micromegas structures for future detectors

M.T. Camerlingo¹, M. Alviggi^{1,2}, M. Biglietti³, M. Della Pietra^{1,2}, C. Di Donato^{1,4}, R. Di Nardo^{3,5}, P. Iengo¹, M. Iodice³, F. Petrucci^{3,5}, G. Sekhianidze¹, M. Sessa^{3,5}

Istituto Nazionale di Fisica Nucleare

IFD2022: 17-19 October 2022

1 INFN Napoli
 2 Univ. di Napoli «Federico II»
 3 INFN Roma Tre
 4 Univ. di Napoli «Parthenope»
 5 Univ. Roma Tre

Small-Pad resistive Micromegas detectors

Pixelated readout: 5x5 cm² anodic plane, pads of **0.8 x 2.8 mm²**

Resistive spark protection schemes

2 layers screen printed resistors

• <u>PAD-P</u>:

micro-mesh (dot line) + pillars (green)
Embedded pad resistors (black)
Coverlay insulator (blue)
Copper readout pads (red) on PCB (yellow)
O(10) MΩ resistance btw top pad resistor
and ground;

Ref [1] Construction and test of a small-pad resistive Micromegas prototype (<u>https://iopscience.iop.org/article/10.1088/1748-0221/13/11/P11019</u>)

 <u>DLC-like</u> (Diamond-Like-Carbon) micro-mesh (dot line) + pillars (orange) DLC foils with 20-50 MΩ/sq (black) Polymide insulator (orange); 6-12 mm vias pitch side; Copper readout pads (red) on PCB (beige)

Ref. [2] Alviggi et al. - NIM Research Sec. A, Vol. 936, 21 Aug 2019, pp 408-411 (https://doi.org/10.1016/j.nima.2018.10.052)

Studies of rate capability

PAD-P scheme

- Relatively fast loss for rate < 0.1 MHz/cm² due to charging-up;
- Slower ohmic voltage drop through the individual pads at higher rates;

DLC-like scheme

- Negligible charging-up effects.
- Gain stable up to 1-2 MHz/cm², and at higher rates, gain drop due to ohmic contribution.
- At 10 MHz/cm², gain drop of ~20%

Studies of tracking performances ($ArCO_2iC_4H_{10}(93:5:2)\%$)

On going studies of time resolution:

with the investigated gas mixtures and APV25 FE chips, detectors have similar time performances (O(10 ns)). To improve

Tracking efficiency

based on cluster search within 1.5 mm fiducial range along the extropated track position in the pad short side

«Faster» gas mixtures (with a small fraction of CF_4);

New FE chips as VMM, tiger, fatic (in touch with the respective groups).

plots from Master thesis of C. Gimmillaro (Univ. Roma Tre)

Towards large areas

- $\circ \quad \textbf{Pad size: } 1x8 \text{ mm}^2$
- **Number of Pads:** 4800
- **DLC-like layout** w 8 mm grounding vias pitch
- FE connectors on the back of the detector (partial readout)

Tomorrow in TB

Repeated gain/rate capability studies with $ArCO_2(93:7)\%$, varying irradiated area up to 25 cm² max area until now.

Conclusions

The results show that small-Pad resistive Micromegas:

are excellent candidates for particle tracking and trigger operation up to rate O(1-10 MHz cm⁻²) with

- stable HV behaviour,
- O(100 um) spatial resolution;
- O(10 ns) time resolution

reached a consolidated constructive techniques for large area detectors, in touch with ELTOS company for the technological transfer

