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The n-RWELL

G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected
single amplification-stage MPGD, 2015 JINST 10 P02008
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The p-RWELL is a resistive MPGD composed of two elements:
* Cathode
* MU-RWELL_PCB:

— aWELL patterned kapton foil (w/Cu-layer on top) acting as
amplification stage

— aresisitive DLC layer! w/p~10<100MQ/O
— a standard readout PCB with pad/strip segmentation
") DLC foils are currently provided by the Japan Company — BeSputter
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NOT IN SCALE

The “WELL” acts as a multiplication channel for the
ionization produced in the drift gas gap.

The resistive stage ensures the spark amplitude
quenching.
Drawback: capability to stand high particle fluxes

reduced, but largely recovered with appropriate
grounding schemes of the resistive layer



" The HR layout
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LHCh upgrade Il (Run3 - Run6)

LHCb muon apparatus Run5 — Run6 option detector requirements

* Rate up to 1 MHz/cm? on detector single gap

* Rate up to 700 kHz per electronic channel

* Efficiency quadrigap >=99% within a BX (25 ns)

e Stability up to 1C/cm? accumulated charge in 10y of operation (M2R1, G=4000)

Detector size & quantity (4 gaps/chamber - redundancy)
* R1+R2: 576 detectors, size 30x25 to 74x31 cm?, 90 m? detector (130 m?2 DLC)
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J-RWELL in HEP/NP & heyond

@ NoUwnkRWNRE

FCC-ee: pre-shower & muon systems of the IDEA apparatus = large area (~4000m?) to be instrumented w/tracking detectors
CLAS12 @ JLAB: upgrade of the muon spectrometer = large area (1.2x0.5m?) low-mass tracking detectors

X17 @ n_TOF EAR2: small -TPC for the detection of the X17 boson > low mass tracking detectors

EURIZON: R&D on IT based on cylindrical micro-RWELL for a SCTF = low mass tracking detectors

UKRI: thermal neutron detection with pressurized 3He-CF4 gas mixtures —> neutron tracking device

TACTIC @ YORK Univ.: radial TPC for nuclear reactions w/astrophysical significance > low mass flexible tracking detectors
URANIA-V: funded by CSN5 for neutron detection - large pad (10x10cm?) tile detectors for radiation portal monitor

Muon collider: HCAL R&D -> pad tile detectors,
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Technology transfer (1)

layout
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M-RWELL technology transfer
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Technology transfer (I}

Step 0 - Detector PCB design @ LNF

Step 1- CERN_INFN DLC sputtering machine @ CERN (+INFN
* delivery foreseen by the end of Oct. 2022
* INFN crew tbd & trained

Step 2- Producing readout PCB by ELTOS
* pad/strip readout

Step 3 - DLC patterning by ELTOS
* photo-resist @ patterning with BRUSHING-machine

Step 4 - DLC foil gluing on PCB by ELTOS
* double 106-prepreg ~2x50um thick
* PCB planarizing w/ screen printed epoxy @ single 106-prepreg

Step 5- Top copper patterning by CERN (in future by ELTOS)
* Holes image and HV connections by Cu etching

Step 6 - Amplification stage patterning by CERN
* Pl etching @ plating ® ampl-holes

Step 7 — Electrical cleaning and detector closing @ CERN




GID: the CERN-INFN DLC machine

... some infos extract from the machine Contract

The machine shall be able to coat flexible substrates with areas of
uptol1l.7mx0.6 m

The machine shall be able to coat rigid substrates with areas of up
100.2m x 0.6 m

Five cooled target holders, arranged as two pairs face to face and
one on the front, equipped with five shutters

The machine shall be able to sputter or co-sputter different
materials, in order to create a coating layer by layer or an adjustable
gradient in the coating

The Contractor shall provide training for the CERN-INFN personnel
concerned, at the CERN site. The aim of the training course is to
ensure that personnel is able to:

e  Program and pilot the process with the machine

e  Conduct a failure analysis on the machine




summary

* The driving force behind the development of the resistive MPGDs is the spark quenching and charge spreading
technique to optimize readout plane

* DLC coatings opened the way to develop new detector structures.
The p-RWELL is one of the examples of emerging MPGD technologies that are evolving and profiting from the
on-going developments on DLC

* The challenge for the next years is the TT of resistive-MPGD technology to PCB industry

* Key-point of the industrialization has been the acquisition of a DLC magnetron sputtering machine co-funded by
CERN and INFN that will enter in operation in 2023

*  Other items under study:
* 2D stripreadout - 2D w/top readout, 2D with capacitive sharing
* Global irradiation (GIF, X-ray tube, Calliope source)
* Eco-gas fast mixtures (essentially for LHCb)

* APV25 w/SRS is a user-friendly electronics for testing MPGD. VMMS3 integration w/SRS in progress (RD51).
The Bari group (G. De Robertis, F. laciulli, F. Loddo) is developing a new ASIC (FATIC) that will be tested for the
HU-RWELL (LHCb). Under study an update version of TIGER (developed for BESIII CGEM by Torino group)

* Sinergy among different groups working on different resistive MPGD technologies (u-RWELL/MM) for common
tooling (DLC machine) should be promoted for the development of high-performance hybrid structures
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The low-rate layout
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1st matrix vias (v1)
DLC

Top Cu
Polyimide

DLC
\

Pre-preg

2nd matrix vias (v2)
Read-out

The Silver Grid
* simplified HR scheme based on SRL

* 2-D evacuation scheme by means a conductive grid realized on

the DLC layer

* grid lines can be screen-printed or etched by photo-lithography

» pitch of the grid lines of the order of 1/cm

Double Resistive Layer

3-D current evacuation scheme

two stacked resistive layers connected through a matrix of
conductive vias

Resistive stage grounding through a further matrix of vias to
the underlying readout electrodes

pitch of the vias with a density less than 1/cm?

Pre-preg

Read-out



High-rate layouts: performance w/KX-rays
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High-rate layouts performance w/m.ip.

Rate capability up to 10-20 MHz/cm?
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The micro-RWELL layouts for high particle rate, G. Bencivenniet al.,



