RPC with Gallium Arsenide electrodes, a solution for medium sized high-rate detectors

A. Rocchi and R. Cardarelli

IFD2022 - INFN WORKSHOP ON FUTURE DETECTORS

OCT 17 - 19, 2022

BARI, VILLA ROMANAZZI CARDUCCI

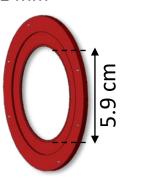
DETECTOR DESCRIPTION

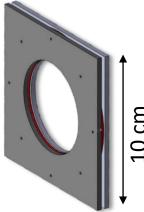
✓ High Rate RPC

$$V_{\mathsf{gas}} = V_{\mathit{gen}} - \rho d\overline{Q} \phi$$

State of the art: $\overline{Q}\sim 6~pC$; $Q_{th}\sim 2-4~fC$; d=1.25 mm; $\rho\sim 10^{10}~\Omega~cm$;

->
$$\varphi \sim 7 \text{ kHz/cm}^2$$

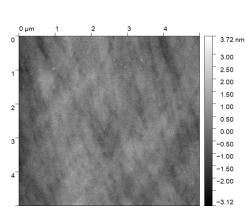

 $\phi \sim 1 \text{ MHz/cm}^2$


The HPL electrodes guarantee stable operation up to a total integrated charge of 0.3 C/cm² --> Effective rate capability significantly limited by the experiment lifetime and background radiation

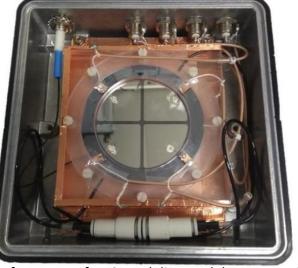
A new material immune to the ageing effect should improve the effective rate capability of a factor ten, just with $10^{10}~\Omega cm$ resistivity

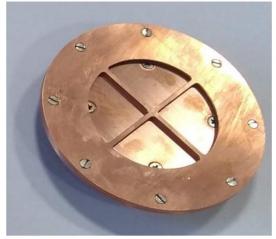
Wafers spacer 1 mm

Wafers holder



Voltage supply	3–5 Volt
Sensitivity	2-4 mV/fC
Noise (independent from detector)	4000 e ⁻ RMS
Input impedance	100-50 Ohm
B.W.	10-100 MHz
Power consumption	10 mW/ch
Rise time $\delta(t)$ input	300–600 ps
Radiation hardness	1 Mrad, 10 ¹³ n cm ⁻²


Gas inlet Ø 2 mm -> Ø 0.6 mm


Material	Semi Insulating u	ındoped GaAs
Thickness	$640 - 643; \mu m$	
Diameter	3"	0 μm 1 2
Resistivity	$1.4 \times 10^8 \ \Omega cm$	1-
Surface treatment	both polished	2
Growth method	VGF	3
Orientation	$(100) \pm 0.01^{\circ}$	
Mobility	$5300 \ cm^2/{ m Vs}$	4

Thanks to Prof. M. Lucci for the GaAs metallization

Wafers sputtering holder

[R. Cardarelli et al, "Performance of RPCs and diamond detectors using a new very fast low noise preamplifier"]

HIGH-RATE TESTS

The rate capability was measured at GIF ++ at CERN. The detector efficiency response is constant up to the maximum observable flow at the Facility.

The maximum counting rate measured is 39 kHz/cm₂, a value consistent with the photon current if we consider a photon conversion efficiency approximately 1-2‰

4187

5427

0.4832

321.5

0.4997

+

5400

5300

5600

htemp

Entries

Mean

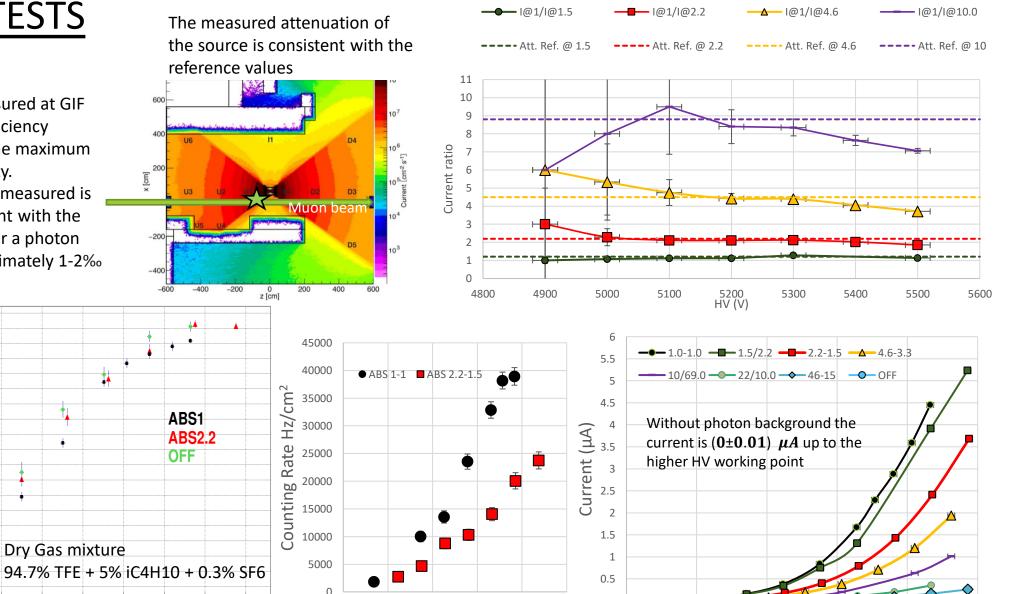
Mean y

Std Dev

Std Dev y

0.85

0.65


0.55

0.45 0.4

0.35 0.3

0.25

0.15

6000

4900

5100

5300 HV_eff (V) 5500

5700

5900

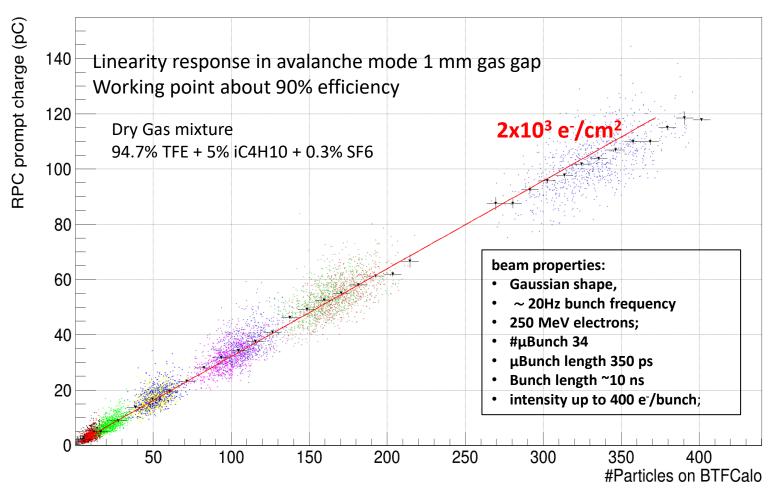
5800

5200

5000

5600

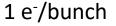
HV_eff (V)

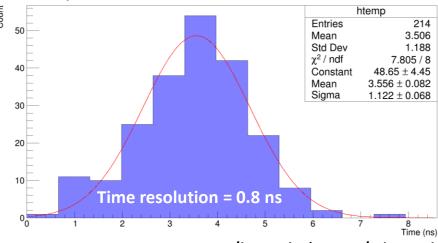

5900

HV_eff(V)

5800

BUNCHED PARTICLES RESPONSE:


LINEARITY AND TIME RESOLUTION



Time resolution with bunched particles improves as

1

 $\overline{\sqrt{synchronous\ particles}}$

 \sim 300 e⁻/bunch (10 e⁻/µbunch)

[B. Buonomo, G. Mazzitelli and P. Valente "Performance and Upgrade of the DAFNE Beam Test Facility (BTF)"]

[A. Rocchi et al "Linearity and rate capability measurements of RPC with semi-insulating crystalline electrodes operating in avalanche mode"]

Conclusions

- The functionality of the detector has been extensively demonstrated: thanks to the high sensitivity of the FE electronics and to the surface quality of the new GaAs wafers the detector is stable up to full efficiency.
- The detector performance is constant up to the maximum photon flux available at the GIF ++ facility, and the maximum counting rate measured is 39 kHz / cm² (about 1-2 ‰ photon efficiency).
- Negligible random counting rate, negligible dark current

Open question:

- What changes in the physics of the detector when passing from an amorphous electrode to a semiconductive crystal?
- What role does electron mobility play?
- Does the resistivity of the electrode change with irradiation?
- What is the maximum rate capability of the detector?
- What is the aging damage of the detector?

Costs

3-inch Undoped GaAs wafer about 100 \$/pz, 6-inch Undoped GaAs wafer about 200 \$/pz.

Electrode sputtering?