

IFD 2022

INFN Workshop on Future Detectors, 17 - 18 October 2022, Bari

SiPM studies for the ALICE 3 Aerogel RICH detector

A. R. Altamura^a, D. Di Bari^b, A. Di Mauro^c, E. Nappi^a, N. Nicassio^b, G. Paic^d, <u>G. Volpe^b</u>

^aINFN, Bari, Italy ^bUniversity and INFN, Bari, Italy ^bCERN, Geneva, Switzerland ^dUNAM, Mexico City, Mexico

RICH system in the ALICE 3 layout

Extend electron and charged hadron ID at momenta higher than the TOF range

Layout options and photon detector

Baseline layout:

- No aerogel focusing
- Aerogel layer @ 0.9 m from IP
- Photodetector @ 1.1 m
- Aerogel ~ 32 m², p.d. ~ 39 m²

Mirror layout:

- With or w/o aerogel focusing
- aerogel layers @ 0.95 m from IP
- photodetector @ 0.9 m
- Aerogel ~ 33 m², p.d. ~ 32 m²

Photon detector main requirements

- Single photon sensitivity in the visible range
 (Photon Detection Efficiency (PDE) > 40-50%)
- Integration fill factor > 90%
- Pixel ~ 3x3 mm²
- Time resolution σ < ~ 100 ps
- Magnetic field $B \le 2 T$
- Expected radiation load: NIEL ~ 10^{12} 1-MeV n_{eq} /cm²

\rightarrow pro's:

- Reduce/suppress geometric aberration depending on mirror:
 - \circ flat: doubling of gap
 - cylindrical: focusing in one direction + doubling of gap
 - \circ parabolic: full focusing
- \circ ~ reduce p.d. area by 60% ~

\rightarrow con's:

- ~ 20% photon loss due to double crossing of aerogel and mirror reflection
- spherical aberration and mirror alignment to be taken into account

The photon detector

Significant enhancement on the semiconductor process over past decades, excellent improvement of CMOS SPAD performance \rightarrow renewed interest for the **development of digital-SiPM** for large area coverage in HEP applications (e.g.: development ongoing in Sherbrooke University and FBK)

R&D on digital SiPM based on CMOS Imaging technology ۲

Reduce cost ٠

Ο

Ο

- Explore solutions for:
 - noise performance improvement (beyond online/offline time gate)
 - radiation hardness improvement (1-2 orders of magnitude, 10^{12} 1-MeV n_{eq} /cm² required)
 - TOF applications (MIPs detection with time resolution ~ 20 ps)

A step forward: Cherenkov-based TOF system

Reflection background

About 30% of photons reflected at SiO_2 - SiTotal reflection at SiO_2 - Ar

Track time resolution

Determined by single photon resolution and blob size

