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The Challenge
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At present, difficult to operate silicon sensors above 1016 neq/cm2

The goals
➣ Measure the properties of silicon sensors at fluences above 1016 neq/cm2

➣ Design planar silicon sensors able to work in the fluence range 1016 – 1017 neq/cm2

➣ Estimate if such sensors generate enough charge to be used in a detector exposed to extreme fluences

The strategy
To overcome the present limits above 1016 neq/cm2 we exploit:
1.  Saturation of the radiation damage effects above 5·1015 neq/cm2

2.  The use of thin active substrates (20 – 40 µm)
3.  Extension of the charge carrier multiplication up to 1017 neq/cm2

→ The whole research program is performed in collaboration with FBK



Low-Gain Avalanche Diodes
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Low-Gain Avalanche Diodes (LGADs) are n-in-p silicon sensors
Operated in low-gain regime (~ 20) controlled by the external bias
Critical electric field EC ~ 20 – 30 V/µm → gain layer region



Low-Gain Avalanche Diodes – Innovation
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Low-Gain Avalanche Diodes (LGADs) are n-in-p silicon sensors
Operated in low-gain regime (~ 20) controlled by the external bias
Critical electric field EC ~ 20 – 30 V/µm → gain layer region

The p+ dopant concentration of the gain implant 
gets reduced by irradiation and LGADs loose their 

multiplication power above ~ 3·1015 neq/cm2

An innovative design of the gain implant has 
been designed to extend signal multiplication up 

to ~ 1017 neq/cm2

→ Complensated LGAD
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From Simulation to Production
Process simulations of Boron (p+) and Phosphorus (n+) implantation have been performed
The electrostatic simulation shows that it is possible to optimise the production process to replicate 
the operation conditions of standard LGADs

→ The first batch of compensated LGAD is about to be delivered by FBK
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Doping Profiles from Process Simulation
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→ A 3 years project has been accepted for funding by AIDAinnova as Blue Sky R&D
to investigate and develop the compensated LGAD design
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Radiation Effect Saturation
At fluences above 5·1015 cm-2 → Saturation of radiation effects observed

Silicon detectors irradiated at fluences 1016 – 1017 neq/cm2 do not behave as expected→ They behave better

Leakage current saturation
I = aVF

a from linear to logarithmic

Trapping probability saturation
1/teff = bF

b from linear to logarithmic

Acceptor creation saturation
NA,eff = gcF

gc from linear to logarithmic

y = 4,23E+13ln(x) - 1,43E+15
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Thin Substrates
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Full depletion voltage at F = 1017 neq/cm2

At high fluences, only thin substrates 
can be fully depleted

VFD = e|Neff|d2/2e

Saturation Reduce thickness

What does it happen to a 25 µm sensor after a fluence of 5·1016 neq/cm2?
▻ It can still be depleted
▻ Trapping is limited (small drift length)
▻ Dark current is low (small volume)

However: charge deposited by a MIP ~ 0.25 fC
→ This charge is lower than the minimum charge requested by the electronics 

(~ 1 fC for tracking, ≳ 5 fC for timing)
→ Need a gain of at least ~ 5 in order to efficiently record a hit

Optimal candidate: 
LGAD sensors
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A new Sensor Design

Difficult to operate silicon sensors above 1016 neq/cm2 due to:
– defects in the silicon lattice structure   → increase of the dark current
– trapping of the charge carriers               → decrease of the charge collection efficiency
– change in the bulk effective doping      → impossible to fully deplete the sensors

The ingredients to overcome the present limits above 1016 neq/cm2 are:
1.  saturation of the radiation damage effects above 5·1015 neq/cm2

2.  the use of thin active substrates (20 – 40 µm)
3.  extension of the charge carrier multiplication up to 1017 neq/cm2
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Gain Removal Mechanism in LGADs
The acceptor removal mechanism deactivates the
p+-doping of the gain layer with irradiation according to

p+(F) = p+(0)⋅e-cAF

where cA is the acceptor removal coefficient
cA depends on the initial acceptor density, p+(0), and on 
the defect engineering of the gain layer atoms
[M. Ferrero et al., doi:10.1016/j.nima.2018.11.121]
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Towards a Radiation Resistant Design
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where cA is the acceptor removal coefficient
cA depends on the initial acceptor density, p+(0), and on 
the defect engineering of the gain layer atoms

Lowering cA
extends the gain 

layer survival up to 
the highest fluences 
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A new Paradigm – Compensation

Impossible to reach the design target with the
present design of the gain layer

Use the interplay between acceptor and
donor removal to keep a constant gain layer
active doping density

Many unknown:
▻ donor removal coefficient, from n+(F) = n+(0)⋅e-cDF

▻ interplay between donor and acceptor
removal (cD vs cA)

▻ effects of substrate impurities on the
removal coefficients
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Compensation – Doping Evolution with F

Three scenarios of net doping evolution with fluence are possible, according to the 
acceptor and donor removal interplay:
1. cA ~ cD

p+ & n+ difference will remain constant ⇒ unchanged gain with irradiation
→ This is the best possible outcome

2. cA > cD
effective doping disappearance is slower than in the standard design
→ Co-implantation of Carbon atoms mitigates the removal of p+-doping 

3. cA < cD
n+-atoms removal is faster ⇒ increase of the gain with irradiation
→ Co-implantation of Oxygen atoms might mitigate the removal of n+-doping 
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A Carbon Shield to further improve cA
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Defect engineering strategy to enhance the gain layer radiation tolerance

→ A Carbon shield will be infused below the gain layer volume to protect the gain layer 
from the diffusion of defect complexes from the bulk region and the support wafer

A spray of Carbon will be introduced below the gain layer region to protect the gain layer 
atoms from defects moving towards the n++ electrode during process thermal loads or 
exposure to particle radiation
→ Oxygen dimers can be captured by the Carbon atoms, preventing the removal of acceptors
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