Compact calorimeter based on oriented crystals

INFŃ

Speaker:

Alessia Selmi

On behalf of the INFN STORM/OREO Collaboration

IDF2022- INFN workshop on Future Detectors Oct 17 – 19, 2022 Bari

Acknowledgement to

UNIVERSITÀ DEGLI STUDI C DELL'INSUBRIA

CSN5

Ricerca

Tecnologica

STORM (STrOng cRistalline electroMagnetic field) beamtest on the H2 line at the CERN SPS, North Area, CERN with 120 GeV electrons

PWO crystals

	$1 X_0$	2 X ₀
axis	<001>	<100>
interatomic pitch	12.020 Å	5.456 Å
U_0	$\sim 600 \text{ eV}$	$\sim 700 \text{ eV}$
Θ_0	$\sim 1 \text{ mrad}$	${\sim}1$ mrad
strong field ($\chi = 1$)	$\sim 30~{\rm GeV}$	$\sim 30 \text{ GeV}$

$1 X_0 0.9 \times 3 \times 3 \text{ cm}^3$

Produced by The Institute for Nuclear Problems, Belarusian State University, Minsk

Produced by Molecular Technology GmbH (Moltech), Berlin

Energy deposited in crystals (ADC units)

Decrease of X_n of around 30%

OREO - ORiEnted calOrimeter

National Coordinator Laura Bandiera, INFN FE

Prototype of compact crystal based calorimeter

Thanks for the attention

Possible applications

Light particles interaction with oriented crystals

M.Kumakhov demonstrated that the <u>crystalline lattice</u> <u>modifies the features</u> of the <u>electromagnetic processes</u> inside the crystal

The periodicity of the planar/axial channeling motion leads to the <u>coherent emission</u> of photons

The particle experiences a field that can be considered constant along the string \rightarrow Constant Field Approximation (CFA)

The electromagnetic shower starts before in the oriented crystal!

The experimental setup

The fine alignment

The stereogram has been reconstructed with the experimental data using the <u>output signal</u> of the Ringo $(1X_0 \text{ crystal})$ and John $(2X_0 \text{ crystal}) \frac{\text{SiPMs}}{\text{and of the multiplicity counter}}$

<u>The PH</u> of the SiPMs and the one of the multiplicity counter are expected <u>to be</u> <u>larger when the beam is aligned with</u> <u>respect to the axis</u>; a smaller enhancement is expected when it is aligned with planes

The complete stereogram

SiPMs PH correlation with calorimeter signal

Evaluation of the radiation length reduction

Features of ARRAYC-60035-4P-BGA

Array size	Sensor type	Readout	Board Size	Sensor pitch	Nr. of connections
2	60035	Sensor	$14.3 \times 14.2 \text{ mm}^2$	7.2 mm	3×3 BGA

squared pixel dimensions = $35 \times 35 \ \mu m^2$ C-series dimensions = $6x6 \ mm^2$

Pixel n° ~ 116000

The pre-alignment procedure \rightarrow performed using a laser and several mirrors

- 1. Crystalline sample + holder and mirror are placed on the goniometer on the beamline
- 2. Two plummets, set on a reference line drawn parallel with respect to the beam, are used to align the laser
- 3. A pentaprism, positioned in front of the crystal, reflects the laser light of exactly 90° on the reference mirror on the holder
- 4. The mirror is aligned using the goniometer so that the laser returns along the same path
- 5. The mirror is aligned with the beam by rotating the holder of 90°
- 6. The crystalline sample is aligned with the beam using an offset measured previously in the laboratory