
MPDG-based calorimeter for future colliders

Anna Stamerra INFN Workshop on Future Detectors Bari, 19 Ottobre 2022

Particle-Flow Calorimetry

Future high-energy lepton colliders require optimal jet energy resolution: $\sigma_E / E < 3.5\%$

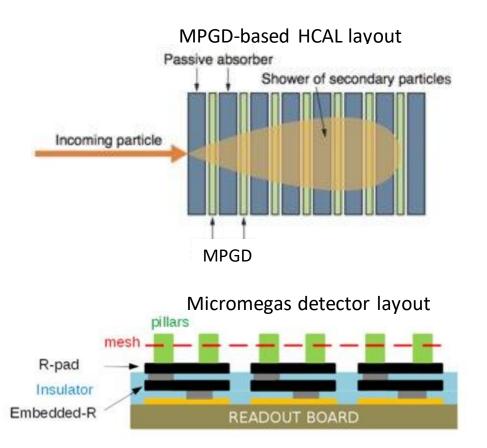
J. Marshall, M. Thomson arXiv:1308.4537

Traditional calorimetric approach

- Jet-energy is measured as a whole
- Measured from ECAL + HCAL
- ~ 70 % of jet energy measured in HCAL with poor resolution (<60%)

PFlow calorimetric approach

- Reconstruct individual particles of the jets
- Exploiting the most accurate subdetector system
- ~ 10 % of jet-energy carried by longlived neutral hadrons is measured in HCAL

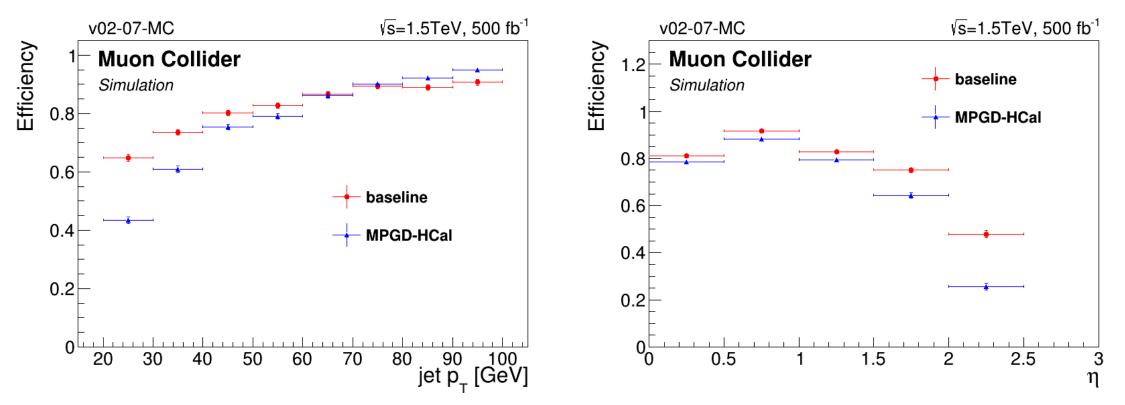

HCal requirements: longitudinal and transverse fine granularity to separate neutral hadrons from nearby charged particles

Proposal: MPGD-based HCAL

The **CALICE collaboration**^(*) already proposed the use of gas detectors (RPCs, GEMs and Micromegas) as active layers for hadron calorimetry to implement **digital** and **semi-digital** readout options.

Micro Pattern Gas Detectors (MPGD) based HCAL

- High rate capability (up to 10 MHz/cm²)
- Allow high granularity
- Flexible space resolution (> 60 μm)
- Time resolution of the order of tens of ns
- Low cost to instrument large area
- Use of environmental-friendly gas mixtures
- **μRWell** and resistive **Micromegas** as best candidates to mitigate effects due to discharge in the gas



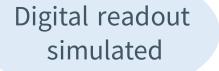
(*)arXiv:1901.08818

MPGD-based HCal at Muon Collider

Baseline: Scintillators + Steel

PRELIMINARY

The jet reconstruction efficiency estimated with the MPGD-HCal is comparable to the baseline one.


Anna Stamerra - IFD2022

MPGD-based HCal at Muon Collider – GEANT4 studies

Implemented geometry

- Layers of alternating
 - 2 cm of Steel (absorber)
 - 5 mm of Ar/CO2 (active gap)
- Granularity given by cell of 1x1 cm²

Energy resolution 90% shower 90.4 b containment in 0.35 $\overline{E_{rec}}$ 14 $\boldsymbol{\lambda}_{\rm I}$ depth and 0.3

12.47/8 0.5023 ± 0.009565

0.1097 ± 0.00396

 χ^2 / ndf

= \oplus 11%

50%

25

30

35

E_{pion}⁴⁰[GeV]

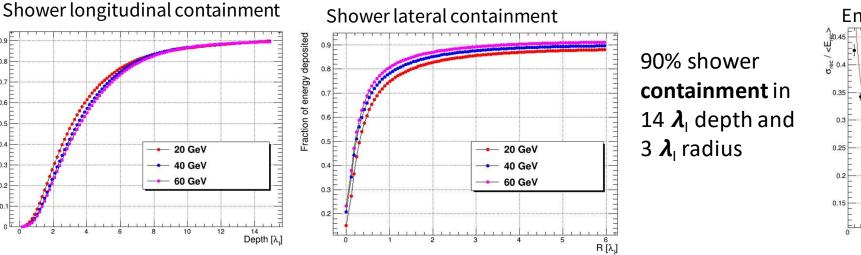
10

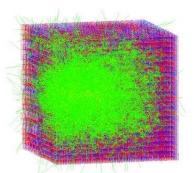
15

20

PRELIMINARY

Fraction of deposited energy


0.8


0.7

0.6

0.4

0.2

π

2-6 GeV/c

HCAL Experimental Prototype

A small scale prototype exploiting last generation resistive MPGDs is under construction **GOAL**: validate the simulations with test beam (MIPs with energies between 1 to 6 GeV)

- **6 active layers** made of state of the art resistive MPGDs
 - Resistive **µ-RWell** and **MicroMegas**
 - $20x20 \text{ cm}^2$ with 1 cm^2 pad size
- For Read Out 32 channels **FATIC**^(*) asic
 - for timing and charge measurements of the hits
 - It is possible to emulate semi-digital readout
- Plans for the prototype
 - Test Micromegas and µRWELL prototypes
 - Build HCal prototype
 - Test under beam irradiation

μ-RWell Drift Electrode -300 V Ar:CO₂=93:7 $E_{drift} = 0.6 \text{ kV/cm}$ 5 mm Conversion/Drift Gap Top Copper (5 DLC laver (<0.1 u = 39 kV/cr 128 µm o~10÷100 MΩ/□ Pre-preg 0.3 mm Readout Strips PCB electrode 400 µm Resistive Strips

FATIC chips

Resistive Micromegas

(*)DOI: 10.1109/IWASI.2019.8791274