

R&D for innovative calorimeters with optical readout

Matthew Moulson and Ivano Sarra, INFN Frascati for the INFN Frascati – Ferrara – Padova – Torino groups

IFD 2022: INFN Workshop on Future Detector (19 October 2022)

The case of Muon Collider

- At the ECAL barrel surface the BIB flux is 300 particles/cm², most of them are photons with <E>=1.7 MeV.
- The BIB produces most of the hits in the first centimeters of the calorimeter

Timing and longitudinal segmentation play a key role in BIB suppression → fast response (small integration window) is essentially to reduce energy contribution from BIB

 Since the BIB hits are out-of-time w.r.t. the bunch crossing, a measurement of the hit time performed cell-by-cell can be used to remove most of the BIB:

- 5x5 mm² cell granularity
- 22 $X_{\rm O}$ (1 λ_i)

Energy released in ECAL barrel by one BIB bunch crossing

R&D for innovative calorimeters with optical readout

19 October 2022

Crilin prototype

- Crilin (Crystal calorimeter with longitudinal information) represent a **valid** and **cheaper backup solution**
 - Based on Lead Fluoride (PbF₂) crystals readout by 2 series of two UV-extended 10µm pixel SiPMs each.
 - Crystal dimensions are 10x10x40mm³ and the surface area of each SiPM is 3x3 mm², to closely match the crystal surface.
 - Modular architecture based on stackable submodules
- Proto-1: 2 submodules assembled by bolting, each composed of 3x3 crystals+36 SiPMS (2 channel per crystal)
 - light-tight case which also embeds the front-end electronic boards and the heat exchanger needed to cool down the SiPMs.
 - SiPMs are connected via 50-ohm micro-coaxial transmission lines to a microprocessor-controlled Mezzanine Board which provides signal amplification and shaping, along with all slow control

Mechanics and cooling system

Locking plates

- Total heat load estimated: 350 mW per crystal (two readout channels)
- Cold plate heat **exchanger** made of copper mounted over the electronic board.
- **Glycol based water solution** passing through the deep drilled channels.

Copper exchanger

19 October 2022

R&D for innovative calorimeters with optical readout

Electronics SiPMs Board and FEE/Controller

SiPMs

matrix

The SiPMs board is made of:

- 36 10 μm Hamamatsu SiPMs
 - → each crystal has two separate readout channels connected in series.
- Four SMD blue LEDs nested between the photosensor packages.
- Controller 18 Front End electronics channels \rightarrow under production

SMD LEDs

19 October 2022

R&D for innovative calorimeters with optical readout

Test beam: PbF₂ and PWO-UF

- Validate CRILIN readout electronics and readout scheme Study systematics of light collection in small crystals with high *n*
- Measure time resolution achievable for PbF₂ and PWO-UF

6.5 7 7.5 8 track at cry X [cm]

- 80 GeV electrons beam
- Tracking with C1 C2 silicon strips
- Start trigger with S2 scintillator
- Signals digitized at **5 GS/s**

Very Preliminary

4.5 5 5.5

Time Resolution per charge slices after asymmetry correction

Attenuator of -6dB used for PWO-UF → Double of LY respect to the PbF2

R&D for innovative calorimeters with optical readout

3.5

3.5

•

K_LEVER

Innovative calorimeters for KLEVER

Main electromagnetic calorimeter (MEC)

- Reconstructs π^0 in $K_L \rightarrow \pi^0 v v$ decays
- Rejects events with extra photons
- Establishes event time (total event rate ~ 100 MHz!)
 - Excellent photon detection efficiency
 - Excellent time resolution (< 100 ps)
 - Radiation resistant

High-performance Shashlyk calorimeter

Small-angle calorimeter (SAC)

- Rejects extra photons escaping through beam pipe
- Sits directly in neutral hadron beam
- Must be transparent to 450 MHz of beam neutrons

• Good photon detection efficiency for E>5 GeV

- Excellent time resolution (<< 100 ps)
- Radiation resistant

Compact, ultra-fast crystal calorimeter

NanoCal project: AIDAinnova WP13.5 (Blue Sky)

Realize first calorimeter with NC scintillators:

CsPbBr₃, 0.05-0.2% w/w in UV-cured PMMA

- 50% of light emitted in components with τ < 0.5 ns
- Radiation hard to O(1 MGy)
- Light yield? O(few k) photons/MeV deposit?

Nano composite scintillators for shashlyk

Quantum dots used as emitters for bright, ultrafast, robust scintillators:

- Calorimetry
- Timing-plane detectors

Trial production of tiles in Protvino format (55 x 55 mm²)

- Two identical modules, 12 layers, very fine sampling
- Comparison of performance with conventional scintillator before constructing full-scale prototype
- Both have 12 fine sampling layers: 0.6 mm Pb + 3 mm scintillator
- Each $1.3X_0$ in depth: expected mip energy deposit = 10 MeV
- Each read out with a single Hamamatsu 13360-6050 SiPM

Nano Cal scintillator PMMA 0.2% CsPbBr₃ Kuraray O-2(100) fibers

KIEVER

Protvino scintillator Polystyrene 1.5% PTP/0.04% POPOP Kuraray Y-11(200) fibers

R&D for innovative calorimeters with optical readout

19 October 2022

Shashlyks: Conventional vs NanoCal

Preliminary (undigested) observations:

- NanoCal signal output significantly smaller than Protvino (x10?)
- NanoCal time resolution for mips 30% worse than Protvino
 Correlated with signal output: less light = worse resolution

Influence of fibers

- QE of SiPM drops by 25% from 480 \rightarrow 550 nm
- Don't know relative LY of O-2 vs Y11 fibers

Also need direct measurements of NanoCal vs. Protvino scintillator

K_lEVER