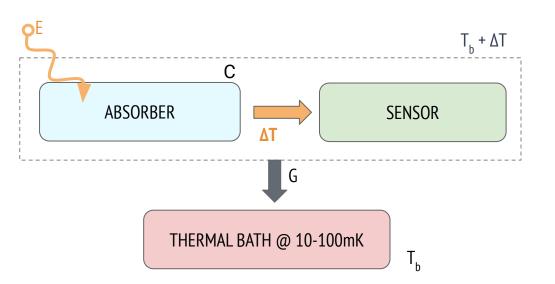
Absorber crystals for cryogenic detectors: status and challenges

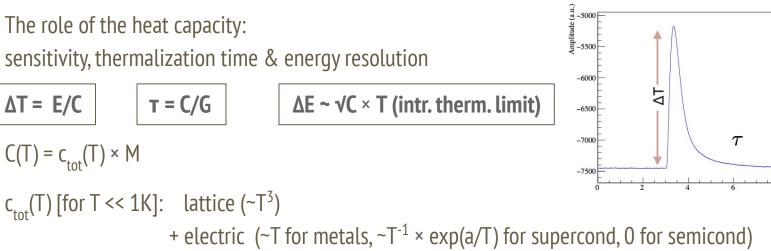

IFD 2022 Workshop - 'Calorimeters' session

Oct.19th, 2022 - Bari

1

Irene Nutini (UniMiB - INFN MiB)

Cryogenic detectors



Absorber crystal:

- Energy deposition \rightarrow phonons/heat $\rightarrow \Delta T = E/C$
- Completely active
- Wide choice of absorber compounds depending on the physics case
- Macro (O(g,cm)) vs. micro (O(mg,100µ))
- Monolithic vs Composite detectors

Temperature sensor: See talk from M. Faverzani

Absorber crystals at low temperatures: heat capacity

+ magnetic (~ T⁻² dipole/shottky)

Choice of crystal compounds:

- Dielectric and diamagnetic for macro (eg. TeO₂, Li₂MoO₄, ZnSe, CaMoO₄)
- Metals (eg. Au) or dielectric (eg. AgReO₄) for micro

10

Time (s)

3

Cryogenic detectors: applications in particle physics

Macro calorimeters

Neutrinoless ββ decay Majorana nature of neutrino

Rare event search: **large mass of ββ emitter (ton-scale)** and low background Rare event search: **large mass**(different elements), low background

Direct Dark Matter searches

High energy resolution: ~5-10 keV @2-3 Low energy thresholds: 0.1-1 keV

MeV-scale

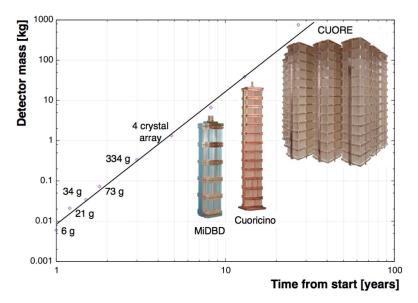
Advanced Mo-based Rare process Experiment

Micro calorimeters

Spectral shape of β decay/EC Neutrino mass

High β source activity (uniformly spread among multiple channels)

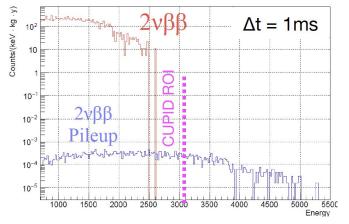
Optimal energy resolution: ~ eV @ 3 keV



4

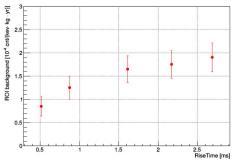
Macro calorimeters for rare events

- Crystal structure: resistance to thermal & mechanical stress
- Crystal growth:
 - \rightarrow Scalability and reproducibility on a 1000 detectors / 1 ton mass scale (eg. CUORE)
 - \rightarrow Radiopurity of different compounds and different growth procedures
- Avoid re-contamination during handling and assembly

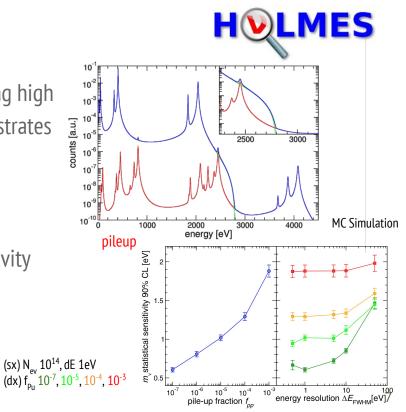


Macro calorimeters: pile-up in the absorber

Large crystals enriched in $\beta\beta$ isotope


- Enrichment process: risks of contamination
- 2nuββ pile-up in the absorber and its contribution to background in 0nuββ ROI
 Mo-based detectors:

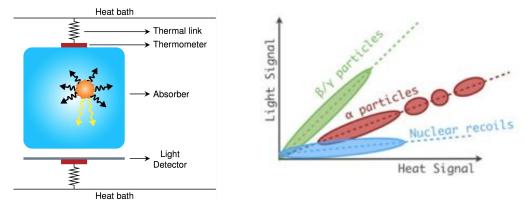
¹⁰⁰Mo 2vββ fast decay time = 7.1×10^{18} yr 3 mHz rate 2vββ for CUPID detectors (300g Li₂MoO₄ enriched at > 95% in ¹⁰⁰Mo) \rightarrow optimize and improve the time resolution of the detectors (RT & dt)



Micro calorimeters: pile-up in the absorber

High activity source in substrate

- Source realization line: technical challenges for realizing high activities and for ensuring **uniform** irradiation over substrates with ~10⁶ micro-detectors (~100Bq/det)
- High quantity of ¹⁶³Ho isotope and **effect on thermal capacitance**
- Pile-up is a major systematics, but its impact on sensitivity can be mitigated via optimal dt ~1 us of micro-calos



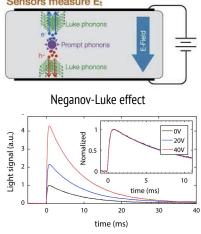
Scintillating cryogenic crystals

Double readout: heat & light

 $\rightarrow \textbf{PID}$ for background discrimination

Scintillating compounds

Examples: Li_2MoO_4 , ZnSe, CaMoO₄, ... ($\beta\beta$ decay); NaI, CaWO₄, ... (Dark Matter)


Generally **intrinsic scintillators** \rightarrow vacancies/defects as luminescent centers: challenge of reproducible light emission among multiple crystals

Characterization of scintillation processes at low $T \rightarrow traps$: reduced/delayed light emission and effect on heat channel

Scintillating cryogenic crystals

Strategies for **improving the information from scintillation light** at 10mK

- Light emission: crystal doping
- Light collection: coating of surfaces → reflective coating of scintillating absorber + anti-reflective coating of Light Detectors
- Improve the sensitivity of the Light detector:
 - Improve LD internal gain Neganov-Luke effect
 - Better coupling LD to thermal sensor (eg. eutectic bonding)

