Highly sensitive, low-temperature sensors

Marco Faverzani

University & INFN Milano - Bicocca

Introduction

(main) Low Temperature Detectors technologies

- semiconductors
 - Neutron Transmutation Doped (NTD) Germanium
- superconductors
 - Transition Edge Sensors (TES)
 - Microwave Kinetic Inductance Detectors (MKIDs)
- others
 - ➢ Magnetic Metallic Calorimeters

Neutron Transmutation Doped (NTD) Germanium sensors

- well established technology
- conduction band engineered to have **large sensitivity at very low temperature** (~10 mK)
- coupled to large crystals (see I. Nutini's talk) for rare event searches
- current biased \rightarrow electro-thermal feedback \rightarrow thermal stability
- great energy resolution $\Delta E \approx \mathcal{O}(\text{keV})$ @ MeV
- also coupled to thin absorbers, to detect light (particle identification)
- large impedance \rightarrow signal integration (stray capacitance) \rightarrow slow signals

- decrease heat capacity to increase sensitivity
- ➢ increase thermal coupling to light absorber (eutectic bonding?)

Neutron Transmutation Doped (NTD) Germanium sensors

CUORE

CUPID (thermal channel)

CUPID (light channel)

Transition Edge Sensors (TESs)

- superconductive films within transition at $T = T_c \rightarrow$ high sensitivity \rightarrow high energy resolution $\Delta E \approx \mathcal{O}(eV)$ @ keV
- thermodynamic limit

$$\sigma_E^2 \approx \xi^2 k_B T^2 C(T) \xrightarrow{if \ C \propto T} \propto T_c^3$$

- metal/superconductor bilayers: Mo/Cu, Ti/Au, Ir/Au, Ti/Al, ... \rightarrow tunable T_c (20÷200) mK
- voltage biased \rightarrow electro-thermal feedback \rightarrow thermal stability
- intrinsically fast, but ultimately time profile tuned by L/R to match bandwidth
- low impedance \rightarrow SQUID readout \rightarrow multiplexing schemes for large arrays (TDM, FDM, CDM, μ wave mux)
- narrow transition region \rightarrow limited dynamics

Transition Edge Sensors (TESs)

- direct (and calorimetric) assessment of neutrino mass
 measurement of decay energy in a beta process
- dark matter searches
 - nuclear recoils due to WIMPs scatter
- photon detection
 - ➤ X-ray spectroscopy, single photon detection, CMB (bolometers)

HOLMES

SLEDGEHAMMER

Micorwave Kinetic Inductance Detectors (MKIDs)

pair breaking detectors: $E = h\nu > 2\Delta$ (\approx meV) increase in quasiparticles $N_{ap} \approx \eta h v / \Delta$ change in sheet impedance $Z_s = R_s + i\omega L_s$ $\frac{\delta f_r}{f_r} = -\frac{\alpha}{2} \frac{\delta L_s}{L_s} \qquad \delta Q^{-1} = \alpha \frac{\delta R_s}{\omega L_s}$ α = surface inductance fraction relaxation time after qp recombination time τ_{ap}

Nature, 425:817 (2003)

MKIDs operated in thermal mode

natural multiplexing

so far $\Delta E = 75 \text{ eV}$ @ 5.9 keV

IFD2022 - Bari 19/10/2022

Marco Faverzani

Appl. Phys. Lett. 106, 251103 (2015)

Magnetic MicroCalorimeters

- paramagnetic temperature sensors (Au:Er, Ag:Er, ...): $\delta E \rightarrow \delta M \rightarrow \delta \phi$
- dc-DQUID readout
 - high energy resolution
 - **fast rise** time ≈ 100 ns
- high linearity
- **no power dissipation** in the sensor
- possible frequency multiplexing

ECHO

Future challenges

• NTDs:

- decrease sensors' heat capacity as much as possible
- ➢ improve coupling to the absorber

MKIDs

 Sensors and readout techniques strongly synergetic with quantum technologies!

• TESs

- → multiplexed readout: $O(10^6)$ detectors, $\tau_R \sim \mu s$
- large scale producing facility closely related to Italian community

MMCs

demonstration of multiplexed readout

Absorber crystals for cryogenic detectors: status and challenges

IFD 2022 Workshop - 'Calorimeters' session

Oct.19th, 2022 - Bari

1

Irene Nutini (UniMiB - INFN MiB)

Cryogenic detectors

Absorber crystal:

- Energy deposition \rightarrow phonons/heat $\rightarrow \Delta T = E/C$
- Completely active
- Wide choice of absorber compounds depending on the physics case
- Macro (O(g,cm)) vs. micro (O(mg,100µ))
- Monolithic vs Composite detectors

Temperature sensor: See talk from M. Faverzani

Absorber crystals at low temperatures: heat capacity

+ magnetic (~ T⁻² dipole/shottky)

Choice of crystal compounds:

- Dielectric and diamagnetic for macro (eg. TeO₂, Li₂MoO₄, ZnSe, CaMoO₄)
- Metals (eg. Au) or dielectric (eg. AgReO₄) for micro

10

Time (s)

3

Cryogenic detectors: applications in particle physics

Macro calorimeters

Neutrinoless ββ decay Majorana nature of neutrino

Rare event search: **large mass of ββ emitter (ton-scale)** and low background Rare event search: **large mass**(different elements), low background

Direct Dark Matter searches

High energy resolution: ~5-10 keV @2-3 Low energy thresholds: 0.1-1 keV

MeV-scale

Advanced Mo-based Rare process Experiment

Micro calorimeters

Spectral shape of β decay/EC Neutrino mass

High β source activity (uniformly spread among multiple channels)

Optimal energy resolution: ~ eV @ 3 keV

4

Macro calorimeters for rare events

- Crystal structure: resistance to thermal & mechanical stress
- Crystal growth:
 - \rightarrow Scalability and reproducibility on a 1000 detectors / 1 ton mass scale (eg. CUORE)
 - \rightarrow Radiopurity of different compounds and different growth procedures
- Avoid re-contamination during handling and assembly

Macro calorimeters: pile-up in the absorber

Large crystals enriched in $\beta\beta$ isotope

- Enrichment process: risks of contamination
- 2nuββ pile-up in the absorber and its contribution to background in 0nuββ ROI
 Mo-based detectors:

¹⁰⁰Mo $2\nu\beta\beta$ fast decay time = 7.1×10^{18} yr 3 mHz rate $2\nu\beta\beta$ for CUPID detectors (300g Li₂MoO₄ enriched at > 95% in ¹⁰⁰Mo) \rightarrow optimize and improve the time resolution of the detectors (RT & dt)

Micro calorimeters: pile-up in the absorber

High activity source in substrate

- Source realization line: technical challenges for realizing high activities and for ensuring **uniform** irradiation over substrates with ~10⁶ micro-detectors (~100Bq/det)
- High quantity of ¹⁶³Ho isotope and **effect on thermal capacitance**
- Pile-up is a major systematics, but its impact on sensitivity can be mitigated via optimal dt ~1 us of micro-calos

Scintillating cryogenic crystals

Double readout: heat & light

 $\rightarrow \textbf{PID}$ for background discrimination

Scintillating compounds

Examples: Li_2MoO_4 , ZnSe, CaMoO₄, ... ($\beta\beta$ decay); NaI, CaWO₄, ... (Dark Matter)

Generally **intrinsic scintillators** \rightarrow vacancies/defects as luminescent centers: challenge of reproducible light emission among multiple crystals

Characterization of scintillation processes at low $T \rightarrow traps$: reduced/delayed light emission and effect on heat channel

Scintillating cryogenic crystals

Strategies for **improving the information from scintillation light** at 10mK

- Light emission: crystal doping
- Light collection: coating of surfaces → reflective coating of scintillating absorber + anti-reflective coating of Light Detectors
- Improve the sensitivity of the Light detector:
 - Improve LD internal gain Neganov-Luke effect
 - Better coupling LD to thermal sensor (eg. eutectic bonding)

News and prospects of crystal scintillators

(rapidfire talk)

Ioan Dafinei INFN Sezione di Roma and GSSI

IFD2022-INFN Workshop on Future Detectors Villa Romanazzi, Bari, October 17 - 19, 2022

Ioan Dafinei

HEP calorimetry

the hardest work has already been done

currently is available a large variety of crystals ready to satisfy most experimental needs

- energy resolution
- time resolution
- sampling factor
- irradiation endurance

a possible user will (only ^(c)) have to take care of detector construction - handling - packaging - transport - certification - storage

Recommended reading:

<u>Marco Lucchini</u>, "Crystal Calorimetry", ECFA Detector R&D Roadmap Symposium <u>https://indico.cern.ch/event/999820/contributions/4200695/attachments/224</u> 1036/3799740/2021_05_07_ECFA_TF6_Lucchini_CrystalCalorimetry.pdf

(few of) crystal candidates

	BGO	PWO	CeF3	LYSO:Ce	GAGG:Ce	YSO:Ce	YAP:Ce	LuAG:Ce	LuYAP:Ce	YAG:Yb	YAP:Yb
LY (normalised)	25	0.5	15	100	115	80	9	35	16	0.36	0.19
						16.0	32	48	15		
decay time (ns)	300	30	30	40	53	75	191	820	1485	4.00	1.50
decay time (iis)		10	8				25	50	36		
emission neak (nm)	480	425	340	428	520	420	370	520	385	350	350
emission peak (min)		420	310								
refractive index	2.15	2.20	1.62	1.82	1.87	1.80	1.94	1.84	1.90	1.83	1.94
dE/dX (MeV/cm)	8.00	10.10	8.00	9.55	8.96	6.57	8.05	9.22	9.82	7.01	8.05
radiation length (cm)	1.12	0.89	1.68	1.14	1.63	3.10	2.77	1.45	1.37	3.53	2.77
Molière radius (cm)	2.23	2.00	2.60	2.07	2.20	2.93	2.40	2.15	2.01	2.76	2.40
Z _{eff}	72.90	74.50	50.87	64.80	51.80	33.30	31.90	60.30	58.60	30.00	31.90
density (g/cm³)	7.13	8.30	6.16	7.40	6.50	4.44	5.35	6.76	7.20	4.56	5.35
melting point (°C)	1050	1123	1443	2050	1850	2070	1870	2060	1930	1940	1870

 $Bi_4Ge_3O_{12}$ (BGO) 2· Bi_2O_3 + 3· GeO_2 → $Bi_4Ge_3O_{12}$ Bismuth Germanate

PbWO₄ (PWO) PbO + WO₃ → PbWO₄ Lead Tungstate $(Lu_{(1-x)}Y_x)_2SiO_5:Ce (LYSO:Ce)$ $(Y_2O_3)_x + (Lu_2O_3)_{(1-x)} + SiO_2 + (CeO_2)^* \rightarrow (Lu_{(1-x)}Y_x)_2SiO_5:Ce$ Cerium doped, Lutetium Yttrium Oxy-Orthosilicate

 $\begin{array}{l} \mathsf{Gd}_{3}\mathsf{Al}_{2}\mathsf{Ga}_{3}\mathsf{O}_{12} \ (\mathsf{GAGG}) \\ \mathbf{3}\cdot\mathsf{Gd}_{2}\mathsf{O}_{3} + \mathbf{3}\cdot\mathsf{Ga}_{2}\mathsf{O}_{3} + \mathbf{2}\cdot\mathsf{Al}_{2}\mathsf{O}_{3} \rightarrow \mathbf{2}\cdot\mathsf{Gd}_{3}\mathsf{Al}_{2}\mathsf{Ga}_{3}\mathsf{O}_{12} \\ \text{Gadolinium Gallium Aluminum Garnet} \end{array}$

YAIO₃ (YAP) $Y_2O_3 + Al_2O_3 \rightarrow 2 \cdot YAIO_3$ Yttrium Aluminum Perovskite

Recommended reading:

<u>Marco Lucchini</u>, "Scintillating crystals at particle colliders trends, challenges, perspectives" SCINT 2022: 16th Int. Conference on Scintillating Materials & their Applications https://cernbox.cern.ch/index.php/s/JWX4o5NZYKyWr9x

Feasibility issues

- readiness of crystals with requested characteristics
- bringing crystals of a producer portfolio to ECAL requests
 - scintillation characteristics
 - shape and dimensions
 - radiation hardness
- implementation of large-scale production
 - building a dedicated production facility or expansion of an existing one (quite large investment in both cases)
 - after the end of production:
 - difficult dismantling or reuse of the production facility
 - difficult retraining of the manpower
- reception and quality control facility at the beneficiary

NB: the construction of the calorimeter itself will be another problem, to be discussed/solved separately, including the decision to make it in-house or through outsourcing

Lessons learned from previous experiences

example of ECAL-CMS

- R&D was needed to find the best suited crystal
 - RD18 CERN and The Crystal Clear Collaboration: <u>https://crystalclearcollaboration.web.cern.ch/</u>
 - SCINT (series of conferences):

http://scint.univlyon1.fr/icap_website/view/2324

- finally, the crystal choice was driven not only by technical/scientific motivations (total costs and feasibility played a very important role)
- two regional centers were set up for the construction of the modules and the assembly of the ECAL super modules (in Rome and at CERN)

- -61 200 capsules APD
- -6120 alveolars
- -6120 tablets
- -6120 SubModules
- 144 Modules
- 36 SuperModules

capacity reached in the final phase: 50 crystals/day (i.e. 50 subunits, 5 submodules, etc.)

Crystals for the bolometer technique in Rare Events Physics

Bolometer:

Highly sensitive calorimeter operated at cryogenic temperature (\sim 10 mK) Energy deposits are measured as temperature variations of the absorber. If the absorber is also an efficient scintillator the energy is converted into heat + light.

Main features:

- high energy resolution O(1/1000)
- high detection efficiency (for DBD, source = detector)
- background-free experiments become possible
- large choice of materials
- scalable to large masses

Scintillating Bolometer

background-free experiments become possible!

	heatsink
	/(T~10-100 mK)
below Θ_D C ~ $(T/\Theta_D)^3$ (dielectric, diamagnetic materials are preferred)	thermal coupling (very weak) G ~ 4 pW/mK
incident particle (E)	energy absorber

Recommended reading:

- CUORE <u>https://cuore.lngs.infn.it/</u>
- CUPID-0 <u>https://cupid-0.lngs.infn.it/</u>
- CUPID <u>https://www.lngs.infn.it/en/pages/cupid-en</u>
- CRESST <u>https://www.lngs.infn.it/it/cresst</u>
- COSINUS <u>https://www.lngs.infn.it/en/cosinus-eng</u>

crystals for OvDBD

element	isotope	end point energy (MeV)	abundance (%)
Ca	48	4.271	0.187
Ge	76	2.039	7.8
Se	82	2.995	8.8
Zr	94	1.145	17.4
Zr	96	3.350	2.8
Мо	100	3.034	9.7
Pd	110	2.013	11.7
Cd	116	2.802	7.5
Те	130	2.527	24.6
Xe	136	2.457	8.9
Nd	150	3.367	5.6

crystals for DM

previous experience

TeO₂ crystals for CUORE

radio-purity insurance

certification procedure during TeO₂ crystals production

SICCAS/INFN Clean Room for TeO_2 final processing at Jiading ultra-pure water generator (2) packaging chemical etching and polishing ż storage paşsage air outer shower final shaping and lapping free passage limit

Journal of Crystal Growth 312 (2010), 2999-3008 Production of high purity TeO₂ single crystals for the study of neutrinoless double beta decay

enrichment: ⁸²Se from 8.82% to 96.30% (made at URENCO, Almelo, Holland) Zn⁸²Se synthesis and crystal growth: made at ISMA Kharkiv Ukraine with strong INFN contribution final processing (cutting and polishing):

made at LNGS, INFN Italy

production yields:

synthesis: 98.35% (99.55% at S-1, 99.40% at VTT and 99.40% at HTT) crystal growth*: 95% cutting*: 96,72% shaping and polishing*: 99%

* including recovered material for recycling

Journal of Crystal Growth 475 (2017) 158–170 Production of ⁸²Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay

Crystals, how to proceed?

Crystals, how to proceed?

scintillating crystal manufacturers follow the evolution of crystal science very closely and often develop their own R&D programs for new crystals

Global Scintillation Crystals Market Research Report 2022

https://www.marketresearch.com/QYResearch-Group-v3531/Global-Scintillation-Crystals-Research-31907475/

The global Scintillation Crystals market was valued at USD 157.92 million in 2021 and it is expected to reach USD 219.04million by the end of 2028, growing at a CAGR* of 4.74% between 2022 and 2028. In terms of volume, the global ScintillationCrystals Production was 765.29 Ton in 2021, and it is predicted to reach 1,152.99 Ton in 2028.

*Compound Annual Growth Rate (CAGR), is the mean annual growth rate of an investment over a specified period of time longer than one year.

Main producers

- Saint-Gobain Crystals
- Hilger Crystals+RMD
- Alpha Spectra
- Amcrys
- Shanghai SICCAS
- Scionix

- Inrad Optics
- Scitlion Technology
- Kinheng Crystal
- Shalom Electro-optics
- IRay Technology
- Anhui Crystro Crystal Materials

<u>concluding remarks</u>

•electromagnetic calorimetry is one of the most exciting fields in experimental physics

lately, the conditions have matured for performant ECAL construction based on scintillating crystals (*the same goes for large mK bolometers*)
many things have changed though, compared to thirty years ago when the ECAL-CMS project started (*and 20 years from starting of CUORE*)
the strategies to be applied will be different when deciding the construction of new experiments using crystal-based ECALs or large-scale (one ton) bolometric experiments

market survey

•check pros and cons of a possible "in-house" production

search for possible geo-political opportunities

Acknowledgements This work is supported by PRIN 2017 Linea A, Settore ERC PE2_3 Advanced techniques for a next generation cryogenic Double Beta Decay experiment - ID n. 2017FJZMCJ_004, CUP D14I17000180001

THE CALORIMETERS OF MU2E AND MEG EXPERIMENTS

Ruben Gargiulo – INFN Frascati National Laboratories Bari – INFN Future Detectors 2022 – 17/19 October 2022

THE MU2E EXPERIMENT

- In construction at Fermilab, Mu2e will search for $\mu^- \rightarrow e^-$ conversions in muonic atoms. This process:
 - happens in a coherent nuclear interaction, with the emission of an e^- with $E_e \sim 105$ MeV = m_{μ}
 - is a Charged Lepton Flavor Violation (CLFV), unobservable in the Standard Model, so any observation is a New Physics evidence
- Mu2e will measure $R_{\mu e} = #$ conversions / #nuclear captures. The single-event sensitivity is 2.2×10^{-17} , i.e. a $\times 10^4$ improvement
- Over $10^{10} \mu$ -/s stopped in an aluminium target for three years, with a magnetic transportation and selection system
- 1.7 us pulsed beam to reject prompt backgrounds + hermetic veto with scintillators to reject cosmic-ray backgrounds by a factor 10⁴
- Conversion electrons observed by a very precise straw-tube tracker and a fast calorimeter

MU2E CALORIMETER OVERVIEW

- Very precise Mu2e tracker (σ_p <200 keV/c) not sufficient for Mu2e aims \rightarrow Calorimeter needed to provide:
 - Stand-alone trigger Track-seeding Electron/muon separation for cosmic-rays rejection
- Physics requirements: $\sigma_E / E < 10\%$, $\sigma_t < 500$ ps and good pileup handling \rightarrow Granular calorimeter with fast pure CsI crystals
- High particle fluxes (20 kHz/cm²) in a very harsh environment (50 krad total ionizing dose):
 - 1T magnetic field \rightarrow Silicon sensors
 - 320 nm CsI light \rightarrow Custom UV-extended SiPMs
 - Intense low-p beam background \rightarrow Two annular disks

- High neutron fluence (3 x $10^{12} n_{1MeV}$ /cm²) \rightarrow SiPM operated at -10°C
- 10^{-4} Torr vacuum \rightarrow Low outgassing components and powerful cooling system
- Detector accessible once in 6 months \rightarrow Redundant readout with 2 SiPM arrays

MU2E CALORIMETER DAQ

- Good pile-up handling needed \rightarrow Scintillation τ <30 ns Two series of 3 SiPMs to reduce capacitance Fast preamps in front-end electronic boards
- 2700 channels with 200 MHz 12 bit digitizers in DIgital ReAdout Controllers
 - 140 DIRAC boards (20 ch. each) with FPGAs for zero-suppression, pile-up handling and throughput reduction, housed in electronics crates
- 8GB/s calorimeter DAQ output, with Mu2e maximum storage limit of 0.7GB/s
 - Online trigger based on PC servers and exploiting beam-off periods

MU2E CALORIMETER CALIBRATION

- High stability required at run time \rightarrow Multiple calibration methods available:
 - SiPM+FEE Gain monitor using a green laser light transported with optical fibers
 - Cosmic rays calibration, for energy equalization and time-offset alignments
 - Low energy 6 MeV gamma rays from fluorine-containing liquid activated with a neutron DT generator
 - Low material-budget carbon-fiber/aluminium honeycomb front plate with integrated pipes

COMPARISON WITH MEG/MEG-II

- Muon to Electron Gamma CLFV search at PSI, looking for the $\mu^+ \rightarrow e^+ \gamma$ decay
- MEG published a limit on the branching ratio at a level of 10⁻¹³, MEG-II (in commissioning) will improve by a factor 10
- MEG-II observes a signal \rightarrow Mu2e also should see a bump, but converse not true
- Over $7x10^7 \mu^+/s$ stopped in a plastic target (no muonic atoms), to fix the kinematics
- ~53 MeV conversion positrons and photons observed with Drift Chamber + Pixelated Timing Counter + Gamma Detector

MEG-II CALORIMETER OVERVIEW

- High energy resolution (~1%) needed at ~53 MeV \rightarrow Homogeneous calorimeter
- Photons-only detector \rightarrow No energy loss in the walls \rightarrow Scintillating liquid calorimeter suitable
- High rates → Liquid Xenon (fastest scintillating noble gas with ~180 nm light emission, 2.2 ns singlet lifetime and 27 ns triplet lifetime)
- Non-uniform response reduction \rightarrow Substitution of MEG PMTs in the inner region with custom VUV-extended SiPMs

R&D for innovative calorimeters with optical readout

Matthew Moulson and Ivano Sarra, INFN Frascati for the INFN Frascati – Ferrara – Padova – Torino groups

IFD 2022: INFN Workshop on Future Detector (19 October 2022)

The case of Muon Collider

- At the ECAL barrel surface the BIB flux is 300 particles/cm², most of them are photons with <E>=1.7 MeV.
- The BIB produces most of the hits in the first centimeters of the calorimeter

Timing and longitudinal segmentation play a key role in BIB suppression → fast response (small integration window) is essentially to reduce energy contribution from BIB

 Since the BIB hits are out-of-time w.r.t. the bunch crossing, a measurement of the hit time performed cell-by-cell can be used to remove most of the BIB:

- 5x5 mm² cell granularity
- 22 $X_{\rm O}$ (1 λ_i)

Energy released in ECAL barrel by one BIB bunch crossing

R&D for innovative calorimeters with optical readout

19 October 2022

Crilin prototype

- Crilin (Crystal calorimeter with longitudinal information) represent a **valid** and **cheaper backup solution**
 - Based on Lead Fluoride (PbF₂) crystals readout by 2 series of two UV-extended 10µm pixel SiPMs each.
 - Crystal dimensions are 10x10x40mm³ and the surface area of each SiPM is 3x3 mm², to closely match the crystal surface.
 - Modular architecture based on stackable submodules
- Proto-1: 2 submodules assembled by bolting, each composed of 3x3 crystals+36 SiPMS (2 channel per crystal)
 - light-tight case which also embeds the front-end electronic boards and the heat exchanger needed to cool down the SiPMs.
 - SiPMs are connected via 50-ohm micro-coaxial transmission lines to a microprocessor-controlled Mezzanine Board which provides signal amplification and shaping, along with all slow control

Mechanics and cooling system

Locking plates

- Total heat load estimated: 350 mW per crystal (two readout channels)
- Cold plate heat **exchanger** made of copper mounted over the electronic board.
- **Glycol based water solution** passing through the deep drilled channels.

Copper exchanger

19 October 2022

R&D for innovative calorimeters with optical readout

Electronics SiPMs Board and FEE/Controller

SiPMs

matrix

The SiPMs board is made of:

- 36 10 μm Hamamatsu SiPMs
 - → each crystal has two separate readout channels connected in series.
- Four SMD blue LEDs nested between the photosensor packages.
- Controller 18 Front End electronics channels \rightarrow under production

SMD LEDs

19 October 2022

R&D for innovative calorimeters with optical readout

Test beam: PbF₂ and PWO-UF

- Validate CRILIN readout electronics and readout scheme Study systematics of light collection in small crystals with high *n*
- Measure time resolution achievable for PbF₂ and PWO-UF

6.5 7 7.5 8 track at cry X [cm]

- 80 GeV electrons beam
- Tracking with C1 C2 silicon strips
- Start trigger with S2 scintillator
- Signals digitized at **5 GS/s**

Very Preliminary

4.5 5 5.5

Time Resolution per charge slices after asymmetry correction

Attenuator of -6dB used for PWO-UF → Double of LY respect to the PbF2

R&D for innovative calorimeters with optical readout

3.5

3.5

•

K_LEVER

Innovative calorimeters for KLEVER

Main electromagnetic calorimeter (MEC)

- Reconstructs π^0 in $K_L \rightarrow \pi^0 v v$ decays
- Rejects events with extra photons
- Establishes event time (total event rate ~ 100 MHz!)
 - Excellent photon detection efficiency
 - Excellent time resolution (< 100 ps)
 - Radiation resistant

High-performance Shashlyk calorimeter

Small-angle calorimeter (SAC)

- Rejects extra photons escaping through beam pipe
- Sits directly in neutral hadron beam
- Must be transparent to 450 MHz of beam neutrons

• Good photon detection efficiency for E>5 GeV

- Excellent time resolution (<< 100 ps)
- Radiation resistant

Compact, ultra-fast crystal calorimeter

NanoCal project: AIDAinnova WP13.5 (Blue Sky)

Realize first calorimeter with NC scintillators:

CsPbBr₃, 0.05-0.2% w/w in UV-cured PMMA

- 50% of light emitted in components with τ < 0.5 ns
- Radiation hard to O(1 MGy)
- Light yield? O(few k) photons/MeV deposit?

Nano composite scintillators for shashlyk

Quantum dots used as emitters for bright, ultrafast, robust scintillators:

- Calorimetry
- Timing-plane detectors

Trial production of tiles in Protvino format (55 x 55 mm²)

- Two identical modules, 12 layers, very fine sampling
- Comparison of performance with conventional scintillator before constructing full-scale prototype
- Both have 12 fine sampling layers: 0.6 mm Pb + 3 mm scintillator
- Each $1.3X_0$ in depth: expected mip energy deposit = 10 MeV
- Each read out with a single Hamamatsu 13360-6050 SiPM

Nano Cal scintillator PMMA 0.2% CsPbBr₃ Kuraray O-2(100) fibers

KIEVER

Protvino scintillator Polystyrene 1.5% PTP/0.04% POPOP Kuraray Y-11(200) fibers

R&D for innovative calorimeters with optical readout

19 October 2022

Shashlyks: Conventional vs NanoCal

Preliminary (undigested) observations:

- NanoCal signal output significantly smaller than Protvino (x10?)
- NanoCal time resolution for mips 30% worse than Protvino
 Correlated with signal output: less light = worse resolution

Influence of fibers

- QE of SiPM drops by 25% from 480 \rightarrow 550 nm
- Don't know relative LY of O-2 vs Y11 fibers

Also need direct measurements of NanoCal vs. Protvino scintillator

K_lEVER

Combining **Dual-Readout** Crystals and Fibers in a **Hybrid Calorimeter** for the IDEA Experiment

Marco Lucchini

INFN & University of Milano-Bicocca On behalf of the **IDEA calorimeter group**

IFD 2022 : INFN Workshop on Future Detectors 17-19 October 2022 Bari- Italy

Current baseline detector concepts for future **e⁺e⁻ colliders**

Two main baseline concepts for general purpose detectors at future e⁺e⁻ colliders (have been around since a while):

- **CLD**: Sampling calorimeters with silicon / plastic scintillators active elements interleaved with tungsten / steel
 - Exploiting high granularity for particle flow algorithms (combining tracker and calorimeter exploiting topological information)
- IDEA: Sampling calorimeters with ~2 m long scintillating (plastic) and cherenkov fibers inside absorber groove
 - Exploiting the dual-readout approach (correct for EM fluctuations in hadronic shower developments)

Current baseline detector concepts for future **e⁺e⁻ colliders**

Two main baseline concepts for general purpose detectors at future e⁺e⁻ colliders (have been around since a while):

- **CLD**: Sampling calorimeters with silicon / plastic scintillators active elements interleaved with tungsten / steel
 - Exploiting high granularity for particle flow algorithms (combining tracker and calorimeter exploiting topological information)
- IDEA: Sampling calorimeters with ~2 m long scintillating (plastic) and cherenkov fibers inside absorber groove
 - Exploiting the dual-readout approach (correct for EM fluctuations in hadronic shower developments)
- EM energy resolution is far from that of state-of-the-art homogeneous crystal calorimeters (1-3%/√E)

Potential for high EM energy resolution

A calorimeter with **3%**/ \sqrt{E} EM energy resolution

has the potential to improve event reconstruction and **expand the landscape of possible physics studies** at e⁺e⁻ colliders

Potential for high EM energy resolution

A calorimeter with **3%**/ \sqrt{E} EM energy resolution has the potential to improve event reconstruction and **expand the landscape of possible physics studies** at e⁺e⁻ colliders

- Clustering of π⁰'s photons to improve ⁻ performance of jet clustering algorithms
- Improve the resolution of the recoil mass signal from Z→ee decays ______ to ~80% of that from Z→ µµ decays (recovering Brem photons)

Technological progress in the field of scintillators and photodetectors has enabled the design of a cost-effective and highly performant calorimeter

Excellent energy resolution to photons and neutral hadrons (~3%/ \sqrt{E} and ~30%/ \sqrt{E} respectively)

Separate readout of scintillation and Cherenkov light (to exploit dual-readout technique for hadron resolution and linearity)

Longitudinal and transverse segmentation (to provide more handles for particle flow algorithms)

Energy resolution at the level of 4-3% for 50-100 GeV jets

Precise time tagging for both MIPs and EM showers (time resolution better than 30 ps)

"Maximum information" calorimetry (6D: x,y,z,t,E,C/S)

Conceptual layout

- **Transverse and longitudinal segmentation** optimized for particle identification and particle flow algorithms
- Exploiting **SiPM readout** for contained cost and power budget

Integration of crystal EM calorimeter in 4π Geant4 IDEA simulation

- Barrel crystal section inside solenoid volume
- Granularity: 1x1 cm² PWO segmented crystals
- Radial envelope: ~ 1.8-2.0 m
- ECAL readout channels: ~1.8M (including DR)

front endcap crystal segment

rear endcap

timing layers (<1X_)

front barrel crystal segment (6 X_o)

rear barrel crystal segment (16 X_o)

10 GeV electron shower

Jet resolution: with and without DR-pPFA

More details in: 2022 JINST **17** P06008

Jet energy resolution and linearity as a function of jet energy in off-shell $e^+e^- \rightarrow Z^* \rightarrow jj$ events (at different center-of-mass energies):

- crystals + IDEA w/o DRO
- crystals + IDEA w/ DRO
- crystals + IDEA w/ DRO + pPFA

Sensible improvement in jet resolution using dual-readout information combined with a particle flow approach \rightarrow 3-4% for jet energies above 50 GeV

Ongoing R&D activities on the EM crystal section

- Key R&D challenges:
 - Crystal readout with SiPMs
 - \rightarrow challenging dynamic range and photon sensitivity
 - Multi-signal readout challenges:
 - Reasonable scintillation and cherenkov light yields
 - Good separation of scintillation and cherenkov signals → e.g. based on wavelength (thin filters)
 - Main crystal candidates are PWO, BGO, BSO because of their high Cherenkov yield and density
- Interest and efforts are ramping up within the IDEA calorimeter group and the CalVision project in the US

500

600

800

Wavelength [nm]

700

Test beam results from IDEA fiber calorimeter prototype

- **EM-size prototype** (10x10x100 cm³) put on beam in 2021
- Basic calorimeter unit: one brass capillary tube of 2 mm external diameter hosting a fiber of 1 mm diameter

Summary

- EM energy resolution at the 1-3%/√E level can expand the physics potential of e⁺e⁻ collider experiments providing enhanced sensitivity to low energy photons
- A dual-readout hybrid calorimeter (homogeneous crystals + fibers in brass tubes) can meet the requirements of EM, HAD and jet energy resolution (through the development of dedicated dual-readout particle flow algorithms)
- Growing international collaborative efforts to address R&D challenges and development of simulation tools to optimize a cost-effective calorimeter design

MPDG-based calorimeter for future colliders

Anna Stamerra INFN Workshop on Future Detectors Bari, 19 Ottobre 2022

Particle-Flow Calorimetry

Future high-energy lepton colliders require optimal jet energy resolution: $\sigma_E / E < 3.5\%$

J. Marshall, M. Thomson arXiv:1308.4537

Traditional calorimetric approach

- Jet-energy is measured as a whole
- Measured from ECAL + HCAL
- ~ 70 % of jet energy measured in HCAL with poor resolution (<60%)

PFlow calorimetric approach

- Reconstruct individual particles of the jets
- Exploiting the most accurate subdetector system
- ~ 10 % of jet-energy carried by longlived neutral hadrons is measured in HCAL

HCal requirements: longitudinal and transverse **fine granularity** to separate neutral hadrons from nearby charged particles

Proposal: MPGD-based HCAL

The **CALICE collaboration**^(*) already proposed the use of gas detectors (RPCs, GEMs and Micromegas) as active layers for hadron calorimetry to implement **digital** and **semi-digital** readout options.

Micro Pattern Gas Detectors (MPGD) based HCAL

- High rate capability (up to 10 MHz/cm²)
- Allow high granularity
- Flexible space resolution (> 60 μm)
- Time resolution of the order of tens of ns
- Low cost to instrument large area
- Use of environmental-friendly gas mixtures
- **μRWell** and resistive **Micromegas** as best candidates to mitigate effects due to discharge in the gas

(*)arXiv:1901.08818

MPGD-based HCal at Muon Collider

Baseline: Scintillators + Steel

PRELIMINARY

The jet reconstruction efficiency estimated with the MPGD-HCal is comparable to the baseline one.

<u>Anna S</u>tamerra - IFD2022

MPGD-based HCal at Muon Collider – GEANT4 studies

Implemented geometry

- Layers of alternating
 - 2 cm of Steel (absorber)
 - 5 mm of Ar/CO2 (active gap)
- Granularity given by cell of 1x1 cm²

PRELIMINARY

Digital readout simulated

HCAL Experimental Prototype

A small scale prototype exploiting last generation resistive MPGDs is under construction **GOAL**: validate the simulations with test beam (MIPs with energies between 1 to 6 GeV)

- **6 active layers** made of state of the art resistive MPGDs
 - Resistive **µ-RWell** and **MicroMegas**
 - $20x20 \text{ cm}^2$ with 1 cm^2 pad size
- For Read Out 32 channels **FATIC**^(*) asic
 - for timing and charge measurements of the hits
 - It is possible to emulate semi-digital readout
- Plans for the prototype
 - Test Micromegas and µRWELL prototypes
 - Build HCal prototype

(*)DOI: 10.1109/IWASI.2019.8791274

• Test under beam irradiation

Drift Electrode -300 V Ar:CO₂=93:7 $E_{drift} = 0.6 \text{ kV/cm}$ 5 mm Conversion/Drift Gap Top Copper (5 DLC laver (<0.1 u = 39 kV/cr 128 µm o~10÷100 MΩ/□ Pre-preg 0.3 mm Readout Strips PCB electrode 400 µm Resistive Strips

FATIC chips

Resistive Micromegas

μ-RWell

INFN Workshop on Future Detectors 2022

"Quantum-dot light emitters for chromatic calorimetry"

Anna Colaleo, Antonello Pellecchia, <u>Federica Maria Simone</u>, Raffaella Radogna, Piet Verwilligen <u>INFN Bari</u>

IFD 2022, 17-19 Ottobre, Bari

Motivations

Potential of quantum sensing

- the possible applications are incredibly varied
- within few years from the laboratory to real-world/ commercial
- many advantages over traditional semiconductors: compact size, fast operation, superior transport and optical properties

Why QT for HEP?

increasingly ambitious physics targets require dedicated detector R&D

R&D for future calorimeters:

- **Demanding needs** from HEP: radiation-hard, enhanced electromagnetic energy and timing resolution, high-granularity with multi-dimensional RO for particle-flow
- R&D with existing technologies can potentially meet this challenge at the cost of a high complexity of the readout system

Technology-driven ('blue-sky') R&D to **push** detectors beyond state-of-the-art

Low Dimensional materials for scintillating detectors

Conventional semiconductor bulk material:

- continuous conduction and valence band
- \rightarrow broad spectrum
- typical 1 photon/Mev/ps (LYSO)
- \rightarrow small yield from fast signal component

Nanocrystals (NC) 1 - 10 nm size:

- discrete energy levels
- energy gap depends on size [keypoint]
- \rightarrow tuning of opto-electronic properties, such as for instance the

emission wavelength

- In direct-band-gap-engineered semiconductor NCs:
- \rightarrow scintillation decay times below 1 ns

Limitations:

- small energy deposited
- low stopping power
- self-absorption
- ightarrow combine bulk scintillators and NCs

Scintillation light time decay. Left: ZnO(Ga) under irradiation by X-rays [doi:10.1016/j.optmat.2015.07.001]. Right: Li-doped PEA₂PbBr₄ [doi:10.1063/5.0093606]

Left: fast plastic BC-422 layers combined with high-Z LYSO as proof-of-principle [doi: 10.1088/1361-6560/ab18b3]. Right: Quantum-dot doped polymer [doi:10.1016/j.radmeas.2018.02.008]

Chromatic calorimeter

- High tunability and narrow emission bandwidth of NCs
- Possibility to combine NCs with bulk scintillators

\rightarrow idea of chromatic calorimeter

Single high-Z material doped with NCs with different emission wavelengths (wl)

- longest wl towards the beginning
- shortest wl towards the end
- ightarrow longitudinal tomography of the shower profile
 - \rightarrow particle ID
 - \rightarrow high-granularity
- ightarrow potentially fast response
 - \rightarrow trigger

Many technological challenges

- radiation hardness of nano materials
- readout electronics
- light guiding → transparency (self-absorption)
- light yield
 - bulk doping technique
 - NC density, device geometry

Normalized UV-vis absorption (C) and photoluminescence (D) spectra of triangular carbon quantum dots [doi:10.1038/s41467-018-04635-5]

Chromatic calorimeter sketch [doi:10.3389/fphy.2022.887738]

R&D needed to make this real

Compact calorimeter based on oriented crystals

INFŃ

Speaker:

Alessia Selmi

On behalf of the INFN STORM/OREO Collaboration

IDF2022- INFN workshop on Future Detectors Oct 17 – 19, 2022 Bari

Acknowledgement to

DELL'INSUBRIA

Tecnologica UNIVERSITÀ DEGLI STUDI

CSN5

Ricerca

STORM (STrOng cRistalline electroMagnetic field) beamtest on the H2 line at the CERN SPS, North Area, CERN with 120 GeV electrons

PWO crystals

	$1 X_0$	$2 X_0$
axis	<001>	<100>
interatomic pitch	12.020 Å	5.456 Å
U_0	$\sim 600 \text{ eV}$	$\sim 700 \text{ eV}$
Θ_0	$\sim 1 \text{ mrad}$	${\sim}1$ mrad
strong field ($\chi = 1$)	$\sim 30~{\rm GeV}$	$\sim 30 \text{ GeV}$

1 X₀ 0.9 x 3 x 3 cm³

Produced by The Institute for Nuclear Problems, Belarusian State University, Minsk

Produced by Molecular Technology GmbH (Moltech), Berlin

Energy deposited in crystals (ADC units)

Decrease of **X**₀ of around 30%

OREO - ORiEnted calOrimeter

National Coordinator Laura Bandiera, INFN FE

Prototype of compact crystal based calorimeter

Thanks for the attention

The Demonstrator of the instrumented decay tunnel for the ENUBET monitored neutrino beam

IFD2022 - Bari, Italy 19th October 2022

Università degli Studi di Padova INFN, Sezione di Padova

Fabio Iacob on behalf of the NP06/ENUBET collaboration

F. Iacob, Padova Univ., 2022/10/19

NP06/ENUBET

NP06: CERN Neutrino Platform experiment number 6. ENUBET: Enhanced NeUtrino BEams from Kaon Tagging.

GOAL: develop a new monitored neutrino beam in which the flux and flavor composition are known at 1% level, and the energy with O(10%) precision.

SCIENTIFIC JUSTIFICATION: the monitored neutrino beam enables a programme of precise cross-sections measurements, which are useful to other neutrino experiments (e.g.: DUNE, Hyper-Kamiokande).

Demonstrator

Hardware deliverable: tagger demonstrator (portion of instrumented decay tunnel).

- Should tag positron in coincidence with electron neutrino
- e / μ / π discrimination capabilities
- Quarter of circle x 1.65 m length

F. Iacob, Padova Univ., 2022/10/19

Demonstrator azimuthal sector

Events at CERN PS T9

3 - 16 October 2022 test beam at CERN PS T9

PRELIMINARY! e / μ / π discrimination from energy deposit and event topology

7

Demonstrator at CERN PS T9

SiPM boards

Interface boards

Readout

Demonstrator

80 SiPM boards 400 SiPMs 1360 tiles ~1.5 km fiber

Possible applications

Light particles interaction with oriented crystals

M.Kumakhov demonstrated that the <u>crystalline lattice</u> <u>modifies the features</u> of the <u>electromagnetic processes</u> inside the crystal

The periodicity of the planar/axial channeling motion leads to the <u>coherent emission</u> of photons

The particle experiences a field that can be considered constant along the string \rightarrow Constant Field Approximation (CFA)

The electromagnetic shower starts before in the oriented crystal!

The experimental setup

The fine alignment

The stereogram has been reconstructed with the experimental data using the <u>output signal</u> of the Ringo $(1X_0 \text{ crystal})$ and John $(2X_0 \text{ crystal}) \frac{\text{SiPMs}}{\text{and of the multiplicity counter}}$

<u>The PH</u> of the SiPMs and the one of the multiplicity counter are expected <u>to be</u> <u>larger when the beam is aligned with</u> <u>respect to the axis</u>; a smaller enhancement is expected when it is aligned with planes

The complete stereogram

SiPMs PH correlation with calorimeter signal

Evaluation of the radiation length reduction

Features of ARRAYC-60035-4P-BGA

Array size	Sensor type	Readout	Board Size	Sensor pitch	Nr. of connections
2	60035	Sensor	$14.3 \times 14.2 \text{ mm}^2$	7.2 mm	3×3 BGA

squared pixel dimensions = $35 \times 35 \ \mu m^2$ C-series dimensions = $6x6 \ mm^2$

Pixel n° ~ 116000

The pre-alignment procedure \rightarrow performed using a laser and several mirrors

- 1. Crystalline sample + holder and mirror are placed on the goniometer on the beamline
- 2. Two plummets, set on a reference line drawn parallel with respect to the beam, are used to align the laser
- 3. A pentaprism, positioned in front of the crystal, reflects the laser light of exactly 90° on the reference mirror on the holder
- 4. The mirror is aligned using the goniometer so that the laser returns along the same path
- 5. The mirror is aligned with the beam by rotating the holder of 90°
- 6. The crystalline sample is aligned with the beam using an offset measured previously in the laboratory