

Francesca Cavallari (INFN Roma), Ivano Sarra (INFN Laboratori Nazionali di Frascati), Monica Sisti (INFN Milano Bicocca)

Trends and future applications in calorimetry

Calorimeter applications

Rare muon decays for Lepton Flavour Violation search electrons/photons 50-100 MeV

HL-LHC e+e- colliders Muon collider GeV-TeV electrons, photons, jets and missing energy

Space experiments for cosmic ray detection GeV – 100 TeV electrons/photons

Disclaimer: selection of material is our choice, based on our knowledge and experience

Low energy - calorimeters for astroparticle physics

- High efficiency (source=detector)
- Wide material choice
- Low energy threshold
- Fully sensitive to nuclear recoils
- True calorimeters
- Radiopure absorbers
- Particle identification capabilities
- Slow time responses
- Difficult to reduce close materials (holders, wires, cryostats, ...)
- Not easy to run stable

Wide range of applications to rare event exp (energy range ~1 eV - ~10 MeV):

- Double beta decay searches
- Neutrino mass direct measurements
- Dark Matter searches
- Coherent elastic neutrino-nucleus scattering
- Astrophysics and cosmology

The thermal sensor is the crucial element. Most common technologies:

- Neutron Transmutation Doped Ge (NTD)
- Transition Edge Sensors (TES)
- Metallic Magnetic Calorimeters (MMC)

Detection principle: ΔT ≅ E/C
 C = total thermal capacity ⇒ low C
 ⇒ C ~ T³ ⇒ low T (T ≪ 1 K)

units)

Light signal (arb.

• Energy quanta: phonons

Heat signal (arb. units)

Low energy - future challenges

HOLMES microwave multiplexing

Background reduction

- $\alpha \beta/\gamma$ discrimination with high resolution detectors in large arrays
- minimize passive materials
- discriminate β background
- remove pile-up events
- event topology reconstruction

ECHo-100k

64 pixels

- 1 mm 115

Main R&D developments:

Particle absorbers with event identification capability

• Thermal sensor technologies for faster response

Very large microdetector arrays

- multiplexed readout
- increase single pixel activity
- ultra-low energy threshold

Ricochet CryoCube

Middle energy – Intensity Frontier

Charged Lepton Flavor Violation experiments

- cLFV processes are thought to be powerful tools to investigate the physics beyond the Standard Model (SM) as all of them are extremely suppressed in the framework of SM
- There are intensive efforts ongoing to find signals of cLFV processes at high-power proton accelerator facilities in Japan, the US, and Switzerland.

- μ stopped on Al target @ 10 GHz then $\mu N \rightarrow eN$
- $-\sigma(E)/E$ of O(< 10 %) for 105 MeV electrons
- Detectors in vacuum $\sim 10^{-4}$ Torr
- Detectors in \sim 1 Tesla magnetic field

Mu2e (US) / COMET (Japan)

MEG/MEG II (PSI, Switzerland)

- μ stopped on plastic film @ 30 MHz
- μ->ey (55 MeV)
- $\sigma_E(E)/E$ of 1-2% for 55 MeV photons

Calorimeters for cLFV experiments

Upgrades of Atlas and CMS calorimeters

Use of calorimeters at the LHC:

- measure/identify photons with excellent energy resolution (H->yy)
- measure/identify electrons
- measure hadrons/jets and missing energy (K=7.TeV, L=5.1ft) (K=8.TeV,

- In preparation for the HL-LHC both Atlas and CMS calorimeters will replace the read-out electronics
- Streaming of the data from front-end to offdetector electronics to improve trigger
- Addition of precision timing (requires large and fast signal)

CMS ECAL: PbWO₄ crystals+ APD (75000 channels) HCAL: Brass+plastic scint.

Atlas: e.m. LAr+lead (~200000 ch.) Longitudinally segmented Hadr.: Plastic scint.+steel

Precision timing at the HL-LHC

Precision timing usage

- for MIPs: to attribute a timing to each track (4D tracking) for vertex identification and pile-up subtraction
- for photons (E>50 GeV): triangulation and vertex identification in H->yy decay

High energy – future colliders

	Ecm(GeV)	Length (km)	L(10 ³⁴ cm-2s-1)	Lint(ab-1)	place	possible start of operation
ILC	250-1000	30	1-10	2-8	Japan	
CLIC	380-3000	11-50	1-8	1-5	CERN	
FCC-ee	90-365	100	230-1.5	75-0.8	CERN	2045-2060
CEPC	90-240	100	70-7	16-5.6	China	
FCC-hh	100000	100	5	20-30		2070-2090
Muon Collider	3000-10000	4.5-10	1.8-20	10		2045-2060

Requirements for calorimeters

- jets: $\sigma(E)/E \sim 30\%/sqrt(E)$ to separate Z and W hadronic decays
- photons: single photon channel requires photon energy precision
- B decays involving π^0 require granularity and resolution $\sigma(E)/E \sim 5\%/sqrt(E)$
- long lived particles emerging in the calorimeters require timing
- e/y, π^0/y , e/ π separation

Particle flow calorimeters

Dual readout calorimeters

European Strategy

	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution	
orimetry	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods	
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments	

Particle flow calorimeters

HCAL

ECAL

- "Typical" jet:
- ~62% charged particles (mainly hadrons)
- ~27% photons
- ~10% neutral hadrons
- $\sim 1\%$ neutrinos

PF calorimeters must

- be very granular (large number of channels)
- small X₀ (=> small gap) such that objects do not spread and overlap.
- be associated with an excellent tracker
- require a **smart clustering software** (also for trigger)
- still photons and neutral hadrons are measured by the calorimeters so good energy resolution

Particle Flow principle

- Measure charged particle momenta with the tracker and subtract their clusters from the calorimeters
- Measure only neutral objects with the calorimeters

Dual Readout calorimeters

Dual readout principle

- Hadronic showers contain a hadron and e.m. component, which fluctuate very much from shower to shower

- measure hadronic and e.m. components separately in the same detector
- Cerenkov light is produced mostly by e.m. component, dE/dx signal mostly by soft hadrons
- possibly combine with an optimal e.m. calorimeter in front with dual readout as well
- and possibly a timing layer with small crystals

Dual readout calorimeter with absorber and scintillating+quartz fibers

Agenda for today

09:00	Trends and future applications in calorimetry	© 15m
	Speakers: Francesca Cavallari (Istituto Nazionale di Fisica Nucleare), Ivano Sarra (Istituto Nazionale di Fisica Nucleare),	Monica Sisti (Istituto
	Nazionale di Fisica Nucleare)	
09:15	Rapidfire talks	③ 1h 45m
	Microbolometers	() 8m
	Speaker: Marco Faverzani (Università & INFN Milano - Bicocca)	
	Macrobolometers	© 8m (
	Speaker: Irene Nutini (Istituto Nazionale di Fisica Nucleare)	
	New scintillators	③10m
	Speaker: Ioan Dafinei (Istituto Nazionale di Fisica Nucleare)	
	Discussion on bolometers and new scintillators	③ 10m (
	The Mu2e and MEG e.m. calorimeters	© 10m
	Speaker: Ruben Gargiulo (Istituto Nazionale di Fisica Nucleare)	
	R&D for innovative calorimeters with optical readout	③10m (
	Speaker: Ivano Sarra (Istituto Nazionale di Fisica Nucleare)	
	The calorimeter for the IDEA experiment	(§ 10m
	Speaker: Marco Toliman Lucchini (INFN & University of Milano-Bicocca)	
	Design and optimization of a MPDG-based hadronic calorimeter for future colliders	© 5m [
	Speaker: Anna Stamerra (Istituto Nazionale di Fisica Nucleare)	
	Quantum-dot light emitters for chromatic calorimetry	© 5m (
	Speaker: Federica Maria Simone (Istituto Nazionale di Fisica Nucleare)	
	Compact calorimeter based on oriented crystals	© 5m
	Speaker: Alessia Selmi (Università degli Studi dell'Insubria)	
	The Demonstrator of the instrumented decay tunnel for the ENUBET monitored neutrino beam	© 5m (
	Speaker: Fabio Pupilli (Istituto Nazionale di Fisica Nucleare)	
	Discussione sui calorimetri di media e alta energia	() 20m

Carl .	(0) 12 (calo) 16 (0)	^{al cal} o) ^{rd cal} o) ^{rd cal} o) ^{rd cal} o) ^{(l(1,11)}
Kelter Lenter	"ITAL Call	h (control h) (control h) forward h) factor e) collider) collider) collider
200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		

		DRDT	< 2030	2030-2035	2035- 2040	2040-2045	>2045
	Low power	6.2,6.3					•
	High-precision mechanical structures	6.2,6.3					
Si based	High granularity 0.5x0.5 cm ² or smaller	6.1, 6.2, 6.3			ŎŎ		ă ăă
calorimeters	Large homogeneous array	6.2,6.3					ă î î
	Improved elm. resolution	6.2,6.3				5 6 6	
	Front-end processing	6.2,6.3					
	High granularity (1-5 cm ²)	6.1, 6.2, 6.3		•			
Nable liquid	Low power	6.1, 6.2, 6.3		•	ŏ	i i	
calorimeters	Low noise	6.1, 6.2, 6.3			Ö		
	Advanced mechanics	6.1, 6.2, 6.3		•	ŏ	ĎŎ	
	Em. resolution O(5%/√E)	6.1, 6.2, 6.3		•	i i i		
Calarimatana	High granularity (1-10 cm ²)	6.2,6.3					
based on gas	Low hit multiplicity	6.2,6.3			ē	i i i	
detectors	High rate capability	6.2,6.3			•		ěěě ě
	Scalability	6.2,6.3					ěěě ě
Cointillating	High granularity	6.1, 6.2, 6.3	•		Ŏ	ĎŎ	Ö Ö
tiles or strips	Rad-hard photodetectors	6.3					• • •
	Dual readout tiles	6.2,6.3			•		• •
	High granularity (PFA)	6.1, 6.2, 6.3		•			
Crystal-based high	High-precision absorbers	6.2,6.3					
resolution ECAL	Timing for z position	6.2,6.3			•	•	
	With C/S readout for DR	6.2,6.3					• •
	Front-end processing	6.1, 6.2, 6.3					ě ě
Fibre based dual	Lateral high granularity	6.2					
readout	Timing for z position	6.2					
	Front-end processing	6.2					
	100-1000 ps	6.2					
Timing	10-100 ps	6.1, 6.2, 6.3	•				• • •
	<10 ps	6.1, 6.2, 6.3			•		
Radiation	Up to 10 ¹⁶ n _{eq} /cm ²	6.1,6.2	• •			• •	
hardness	> 10 ¹⁶ n _{eq} /cm ²	6.3					
Excellent EM energy resolution	< 3%/√E	6.1,6.2		• •			

Outlook and Experience operating calorimeters for discussion

Crystal calorimeters

- •achieve optimal e.m. energy resolution
- •require hard work to monitor and calibrate
- •Good calibration is needed also for trigger rate stability
- •Data streaming off-detector allows more flexibility and future trigger upgrades
- •Can achieve precision timing

Higly segmented / Particle Flow calorimeters

- •Are optimal for particle flow techniques combined with good tracker
- •Must measure the neutral hadrons and photons well
- •Are intrinsically redundant
- Produce a lot of data
- •Require a dedicated, sophisticated and fast software
- •require some triggering logic on the front-end (today)
- •Full data streaming is not possible today (perhaps in the future?)
- require detailed simulation effort to describe shower containment and especially for calibration
 Can be equipped with a precision timing layer

Dual readout technique

- •Allows best resolution for hadrons through measurement of e/h fraction
- •Can be combined with a crystal e.m. calorimeter in front through Scintillation/Cerenkov light separation
- •Could be made granular
- •Can be equipped with precision timing measurement