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Ready for new challenges
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From micro-patterns to large experiments, 
gaseous detectors are still largely exploited



Outline
● Timing

● Tracking

● TPC

● MPGD for neutron and hadron therapy

● MPGD integrated on asics

● Ageing of gaseous detectors 
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● Disclaimer:

Many interesting topics not covered here, some are in the rapid talks

We rely on the lively discussion to cover the missing points!



Timing detectors
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RPC for trigger/tracking
Resistive Plate Chambers
- high and uniform electric field → prompt signal

Used in LHC experiments (ATLAS, CMS, ALICE)
- bakelite electrodes 2mm thick separated by a 2mm gas gap
- time resolution ~1ns
- rate capability <1kHz/cm2

- ageing certified for 10 y of LHC (ATLAS: 0.3 C/cm2)
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Improved performance in preparation for HL-LHC:
ATLAS BIS78 chambers (similarly for CMS iRPC)
- reduced electrode thickness 1.4 mm, gas gap 1 mm
- new FE with new chip, threshold as low as 1 fC
- rate capability and longevity x10
- time resolution ~400 ps



MRPC for TOF
Thinner gaps to reduce avalanche fluctuation

ALICE TOF specs and performance:
- glass electrodes ~500 μm, gas gaps 250 μm
- FE electronics based on NINO ASIC 
- rate capability ~0.5 kHz/cm2

- time resolution ~40 ps
ALICE TOF – 10 gaps

Multi-gap RPCs used as large area TOF in several 
experiments 
Application also in Muon Tomography and PET

Fast Timing MPGD: exploits same principle of MRPC 
- several layers of GEM-like detectors 
→ see FireTalk by P.O.J.Verwilligen
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RPC/MRPC new electrodes
R&D driven by rate capability and longevity
Rate limited by voltage drop on electrodes:
 Veff = Vgen – 2 𝛒 d <Q> 𝚽

Diamond-Like Carbon electrodes
DLC film is deposited by sputtering 
(typically 0.1 μm thick) graphite on polyimide foils

G.Bencivenni @ RPC-2022

Single gap RPC
- prototype with 2mm gas gap
- cathode protected by UV-photons with urethane coating
- high stability (ΔV > 1kV) and good performance in terms of 

efficiency (~95%) and time resolution (~1 ns)

MRPC (prototype detector for MEG II)
Low material budget needed for on beam detector
- 4 gaps of ~400 μm 
- 170 ps time resolution
- 1 MHz/cm2 rate capability

Semi Insulating Gallium Arsenide wafers:
low resistivity, crystal structure, thin electrode
- new material immune to ageing effects 
- improve rate capability x10, just with 108 Ωcm resistivity
- medium size high rate application
→ see FireTalk by A.Rocchi
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RSD: Resistive Strip Detector
- First prototype with screen-printed 

resistive strips on Kapton             
(100 kΩ/▢ C-loaded polymer)

- Good resistivity uniformity reached
P. Iengo @ ICHEP-2020



New electronics

ATLAS Phase2 RPC new Front-End electronics
- improved signal-to-noise ratio 
- reduction 1/10 of average charge per count wrt current system
- rate capability from 1 kHz/cm2 to 10 kHz/cm2

- minimum threshold of 0.3 mV
- detectable signal of 1-2 fC
- amplification + discrimination + TDC function implemented

Mixed technology of Silicon BJT for the discrete component preamplifier 
and a full custom ASIC in IHP BiCMOS technology

RPC 
signal

Si-BJT 
preamplifier

Si-Ge HBT
discriminator

Si-Ge HBT
TDC

Serializer, 
Manchester 

encoder,
Driver

FE 
board

FE 
ASIC

Total FE power consumption: 15mW/ch

Signal to 
trigger box

PicoTDC - the successor of HPTDC
- low noise high resolution TDC

https://kt.cern/technologies/picotdc
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https://kt.cern/technologies/picotdc


Tracking detectors
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Wire-based trackers 
● Gaseous detectors are still the primary choice as tracking detectors 

when spatial resolution of O(100 um) or worst is sufficient
○ Muon detector for large system
○ Central trackers 
○ Low material budget
○ TPC

• Wire chambers valuable option for moderate rates

• Wire-based tracker
• MEG-II @ PSI and COMET @ J-PARK

MEG-II

COMET

Mu2e

• Muon system
• ATLAS sTGC (Phase1)
• ATLAS sMDT (Phase-II)

ATLAS sTGC

ATLAS sMDT

Straws:

NA62 / Mu2e / COMET 
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IDEA drift chamber for future lepton colliders 
(including super-𝜏/charm factories)
→ See FireTalk by B. D’anzi



Inner tracker MPGD
• Inner trackers: GEM

BESIII GEM IT

KLOE II GEM IT

CLAS12  MM IT
Barrel + EndCaps

Fully reconstructed antiproton 
annihilation event

● MPGD satisfy increasing requests in rate capability 

ASACUSA  MM IT
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• Inner trackers: Micromegas

@ Jefferson Lab

@ CERN



Large Apparatus: LHC Muon systems
● MPGD widely used in next generation muon system
● LHC experiment upgrades

○ CMS EndCap (GEM, Phase-1+Phase2) – 224 m2

○ ATLAS EndCap (NSW Micromegas, Phase-1) – 1280 m2

○ LHCb Inner radius of Muon tracker (Phase-2)  

CMS GEM

ATLAS Micromegas

Voltage drop compensation

Full production in industry

uTPC technique is the key for 
reconstruction of inclined tracks

LHCb uRWell

uRWell in R1 and R2
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Introduction of resistive MPGD (ATLAS) opened the road to stable 
operations at high gain and to development of new structures

uRWell → rapid talk by G. Bencivenni, uPIC, 
Pad Micromegas for high rate → rapid talk by M.T. Camerlingo



TPC
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TPC
● ALICE new TPC: example of challenges for next generation 

TPC with high rates

● Developed a 4-GEM readout stage with staggered holes
○ Ion Back Flow reduction <1%
○ No gating and triggerless operation (1 → 50 kHz DAQ rate) 
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Cosmic Ray Runs

Bethe & Bloch distributions



TPC
● TPC for ILC ~10 m2. Three options under study

○ GEM / Micromegas / GridPix

Gating scheme based on 
large-aperture GEM

First development of large-scale Pixel GridPix
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● TPC for CEPC: good results for hybrid GEM+MM technology



MPGD for neutrons and 
hadron therapy
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MPGD for neutrons

To increase the efficiency in 
thermal neutrons, orthogonal 
borated grid are used
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GEM detectors for neutrons, conversion on Boron-coated electrodes

Different structures are proposed and 
tested for different applications;



MPGD for neutrons

➢ good time resolution (5 ns)
➢ high gamma rejection (>105)
➢ high rate capability O(10 MHz/cm2) 
➢ good spatial resolution O(mm)

good candidate for 3He filled detector replacement
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GEM detectors for neutrons, conversion on Boron-coated electrodes



MPGD integrated on asics
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GEMPix: Verification of treatment plan in hadron therapy 

Combined use of GEM and TimePix (3D version of MediPix, a family 

of photon-counting pixel detectors) allows to measure the 3D 

energy deposition of a therapeutic beam in a water phantom

The beam is spread out with increasing depth in water Larger 

detector area of 20 cm x 20 cm needed to cover typical maximum 

radiation field
20

Fragmentation tail



MPGD: LaGEMPix (optical readout)
LaGEMPix: optical photo detectors (Organic Photo-Diodes) on top of 
Thin Film Transistor. Sensitive to scintillation light with 120 μm2 pixels 

Area: 10x10cm2

1.6 mm holes, with a 
pitch of 2.5 mm can be 
resolved
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TPC gassose a lettura ottica 
per eventi a bassa energia:
high sensitivity and high granularity
GEM optical readout
→ see FireTalk by F.DiGiambattista

Scintillation light is 
produced by the gas during 
the multiplication process



MPGD: GridPix (charge readout)

Proposal for the TPC readout in ILC, 
experiment to study the electric dipole 
moment of the muon
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Ageing
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Ageing
Ageing phenomena in gaseous detectors can be the subject of a dedicated conference (as it was in the past!). 
Here only few hints
● Main source of classical ageing:

○ Degradation of material with integrated charge / time
○ Chemical effects of gas compounds 

● Ageing is however a subtle phenomena, depending on many parameters (gas mixture, materials, operating 
conditions, rates…) and detector ageing must be studied for each specific application

● Example: relevance of controlling the operation parameters (e.g. gas flow) in GEM. LHCb test

● Ageing test must be long-term: acceleration might mitigate the aging effect (well known from wire chambers)
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Ageing

25

Typical aging phenomena on wire 
chambers

• Ageing behavior of traditional gaseous detectors (wire chambers, RPC) well known
• Bakelite RPC 

• Surface degradation mainly due to F- radicals combining in HF 
→ increase of dark current. 
Mitigation: reduce F-based gas components; increase gas flow

• Increase of bulk resistivity → increase in working point
Mitigation  → restore rH value. Effect can be fully controlled

• Wire chambers
• Deposits (whiskers) on the wire surface → distortion of pulse height spectra, gain 

loss, noise rate
Mitigation: no hydrocarbons, no silicon material

J.Va'Vra, Nucl.Instr.and Meth.A252 (1986) 547.

Performance degradation with time  of wire-based BES IT



Ageing
● MPGD better behavior compared with wire chambers
● Accelerated aging tests have been conducted on 

GEM, Micromegas and other MPGD with excellent 
results

15.09.19 26

GEM Micromegas

Etching effect on 
Triple-GEM operated with 
CF4-based mixture at low 

flow 

Resistive Micromegas (ATLAS-like): 3-years exposure at GIF++ 
Total collected charge ~0.3 C/cm^2 → No sign of aging in Ar:CO2

• New materials (resistive coating) and challenging detector 
operations (high rates, large integrated charge) calls for 
dedicated studies

• Effects of hydrocarbons must be re-evaluated for the 
specific application

Aging in ALICE GEM prototype operated with hydrocarbons (CH4) in Ar 
95% mixture. Aging stops when CH4 is replaced with CO2

Test ongoing with 2% of iC4H10. 
Results from accelerated test (up to 
>1C/cm2) and from long-term test at 

GIF++ : no aging observed

Gain

Energy resolution

Gain

Energy resolution



Thank you
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Backup
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RD51 Collaboration

● Development of Micro-Pattern Gas Detectors Technologies

● The proposed R&D collaboration, RD51, aims at facilitating the 
development of advanced gas-avalanche detector technologies and 
associated electronic-readout systems, for applications in basic and 
applied research. The main objective of the R&D programme is to 
advance technological development and application of Micropattern 
Gas Detectors.

15.09.19 P. IENGO - Micro Pattern Gaseous Detectors 29

RD51 has a key role in promoting the development and 
dissemination of MPGD with common test facilities, tools (eg 

Garfield simulation tool) and cross-fertilisation between 
different groups and different expertise 
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RPC environmental impact
RPC gas mixtures in use have a  GWP > 1000 [CO2 =1]
Main contribution is C2H2F4/R134a (GWP=1430)
Not only an environmental issue, also cost and procurement: 
increasingly expensive and being phased out

Candidates for replacing R134a are being studied
🡪 see FireTalk by A.Pastore

Where possible, transition to eco-friendly mixtures already 
done…

Emissions from
particle detection

tC
O

2e

20182017 2019 2020
Run2 LS2

Total CERN emissions

Mixture used in the EEE MRPCs: 
R134a /SF6 98/2 🡪 GWP ≈1880

62 telescopes with a flow of 2 l/h 🡪 ≈ 106 l/year

The EEE Collaboration has started 3 important actions:
− Gas flow reduction
− Gas recirculation system 
− Eco-friendly gas mixtures (HFO/He)

M.Abbrescia @ 
RPC-2022
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Timing detectors: other ideas
PICOSEC, two-stage detector made by a Micromegas 
coupled to a Cherenkov radiator and equipped with a 
photocathode
- time resolution ~25 ps in small prototypes

Application cases:
- timing layer in calorimeter
- TOF for particle identification
🡪 see FireTalk by D.Fiorina

Resistive Cylindrical Chamber
Bakelite electrodes (prototypes with gap 1mm and 0.2mm)
Cylindrical geometry, thin gap, recover efficiency with high 
pressure
Time resolution 170ps for 0.2mm gap 
🡪 see FireTalk by A.Rocchi
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Time resolution to complement pile-up mitigation wherever
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