

Francesco Di Capua on behalf of the DarkSide Collaboration University of Naples Federico II and INFN

Outline

- Dark Matter results with LAr
- Large scaling challenges and infrastructure for future DM searches
- Photodetector R&D and future detection concepts
- DarkSide-20k experiment

Results from LAr experiment

DarkSide50: succesful physics run with underground argon 2013-2018

Inner Argon dual phase TPC

- 46 kg LAr target 38 x 3 inches PMTs

Liquid scintillator neutron veto

- 30 t of ¹⁰B-loaded liquid scintillator
- active gamma and neutron veto

Water Cherenkov muon veto

- 1 kT of ultra-pure water
- passive shield for external radiation
- active veto for muons

Background free DM search with Uar, Best sensitivity to date for low-mass

DEAP-3600: largest running LAr detector designed for WIMP search

- Ultra-pure acrylic cryostat coated on the inside with TPB wavelenght shifter
- Surrounded by 50 cm plastic for thermal neutron sheilding
- Hamamatsu R5012 PMT view the LAr volume at 71% coverage

Technology challenges for multi-tonne scales: low radioactivity Argon

Ar depleted of ³⁹Ar with respect to atmospheric argon to be extracted from underground wells and **Ar purification infrastructures**

- < 1 yr to process DarkSide UAr
- other rare stable isotopes production for interdisciplinary benefits (¹⁸O, ¹³C, ¹⁵N)

URANIA 330 kg/day

- < 1 yr for 50 tonnes of UAr
- Possible use of UAr for other experiments (LEGEND, COHERENT, ...)

Technology challenges: cryogenic photosensor R&D

Darkside-20k: custom cryogenic SiPMs developed by a collaboration between INFN with Fondazione Bruno Kessler

Reduced DCR with a proper optimized E field engineering for cryogenic applications

Tile+preampl integrated into a unique PCB

PDM: largest SiPM unit ever: 24 cm²

Series/parallel ganging 4s 6p

PDU: 16 PDM arranged in 4 readout channels 20 cm × 20 cm Photodetector assembly: Nuova Officina Assergi @ LNGS Radioclean packaging for cryogenic applications

- 421 m² radon-free ISO6 clean room
- Top quality equipments for packaging of silicon devices

Cryo silicon prober

- Silicon dicer
- Flip chip bonder
- Wire bonder
- No reflow oven
- Single PDM test
 - line
- PDU assembly

Fully operational by the end of the year

Utility for large scale LAr and LXe detectors

DarkSide-20k overview

- Anode, cathode and field cage made with conductive paint (Clevios)
- **TPC readout:** 21 m² cryogenic SiPMs

• TPC lateral walls + additional top&bottom planes in Gd loaded acrylic (PMMA)

• VETO readout: 5 m² cryogenic SiPMs

Future photodetection challenges

Digital SiPM

- From analog to digital SiPM
 - Monolithic devices
 - 3D vertical integration (high fill factor)
- Photodetection modules
 - Low power
 - Large area
 - Low background & cryogenics

Required cooperation with industrial foundries

Charge and light readout

- Photosensitive anodic plane
- Pixel readout to collect ionization charge and UV photons D. Nygren, Y. Mei: arXiv:1809.10213
- Thin-film photoconductor coating
- Amorphous Selenium (commonly used in X-Ray digital radiography devices)

Conclusions

- Achieving background levels below neutrino floor main challenge for next generation Dark Matter experiments
- Technology innovations push forward ultra low background techniques
- Advanced infrastructure required for underground argon extraction (URANIA) and purification (ARIA) and for detector assembly (NOA)
- Strong R&D to develop cryogenic SiPM modules

Cryo temperature SiPMs

ANDREA FALCONE – BARI, IFD 2022

- ✓ Neutrino and Dark Matter physics.
- ✓ Advantage: easy photon counting, low DCR, low bias voltage, radio purity.
- ✓ Disadvantage : dimensions.
- ✓ Possible uses in medical phisics and where low DCR is needed.

≥ > 0.005 ✓ FBK NUV-HD-CRYO – Triple Trench 0.004 Epossidic packaging 0.003 Lower CT 0.002 0.001 A2 G1 A1 A3 -53 A5 \$5 A4 S4 A6 ×10⁻¹ 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 t [s] Counts 10^{2} 6x6 mm² SiPM dimension 10 6 x 10⁶ Gain @ 45% PDE 50 mHz/mm² DCR -2 8 10 Signal Area [Vs] Ν *** * * Ж Cross talks 20 % 0.035 0.03 Afterpulse 2 % ₩Ж 0.025 Ж Ж 0.02 ¥ 0.015 0.01 0.005 Ennel 10^{-6} 10⁻⁵ 10⁻⁴ 10^{-3} 10⁻² 10⁻¹ ∆T[s]

✓ Very good S/N in ganging mode

Num SiPM	S/N @ 45% PDE			
24	10.6			
48	9.7			
72	8.4			
96	7.9			

https://arxiv.org/abs/2207.13616

ANDREA FALCONE - BARI, IFD 2022

Cryogenic Power-over-Fiber for fundamental and applied physics

Marta Torti INFN- Sezione di Milano Bicocca

IFD22 – M.Torti – 18 Settembre 2022

Concept overview

- CRYO-PoF is aimed at designing a cryogenic system based on optoelectronic devices to power analog and digital electronics.
- Using the same laser line, we want to:
 - give bias to the SiPM,
 - give HV to SiPM amplifier,
 - regulate the SiPM bias, with amplitude modulation.
- This solution provides noise immunity, voltage isolation, and spark-free operation.

This solution is inspired by the needs of the DUNE Vertical Drift detector.

All systems that operate in harsh environments (low temperature and prohibitive for a copper-based power line) can benifit.

IFD22 – M.Torti – 18 Settembre 2022

A schematic view

A schematic view – first step

Laser: GaAs 808 nm

Laser connected to the optical receiver by an optical fiber. The receiver is directly connected to the SiPM amplifier (3.3 V).

Firs results – 77 K

Output signal from SiPM (no PoF):

- standard biased SiPMs
- standard biased amplificator

S/N = 7.97

Output signal from SiPM (PoF):

- standard biased SiPMs
- PoF biased amplificator

 $S/N = 7.92_{6}$

New ideas on Photosensors & Electrodes for DARWIN, the Next-Gen LXe TPC

Alfredo Davide Ferella

DARWIN

on behalf of the XENON INFN groups (LNGS-UnivAq)

TPC main challenges

- What is special we all know!
- Main challenging parts:
 - PMTs:
 - radioactivity
 - Spurious events (after-pulses, dark counts)
 - Electrodes:
 - Warping
 - Wires may break
 - Both grids and meshes generate micro-discharge
 - UV light (178 nm @ LXe)

Our solutions

Transparent Conductive Electrodes (TCEs) Wavelength shifter suitable for LXe

Tested in a new facility @LNGS dedicated to DARWIN

Photosensors

ABALONE

Glass-glass sealing

• Indium-based evaporated seal

arXiv:1703.04546 arXiv:1810.00280, NIM A 954 (2020) JINST 17 C01038 (2022)

Patent Numbers: U.S. 9,064,678, US-2017-0123084

IFD 2022 - Bari 17-19/10/22

Principle:

- p.e. accelerated towards scintillator windowlet (LYSO)
 - $L_0=32 \ \gamma/keV \rightarrow$
 - Readout using SiPM (G = $\sim 10^6$)
 - @ 25 kV, assuming (pessimistic) collection efficiency η = 10% $\rightarrow \sim$ 80 PE
- Total gain: ~10⁸

Major advantages:

- all UHV-components are evaporated
 - production can be fully automated
- field-shaping electrodes work as getter
- good timing
- good pulse height separation

Ferella - R&D for DARWIN

ABALONE tests at LNGS

The setup at LNGS

ABALONE tests at LNGS

- Percentage of Non-Returning measured: around 30%
 - As expected from simulation
- We increased the voltage up to 24 kV
- Spectrum with 2 peaks:

Next step:

measure in LXe

IFD 2022 - Bari 17-19/10/22

- SiPM dark counts, not changing with V
- ABALONE Single PE, increasing with V

4000

6000

8000

2000

1600

10000

area (ADC x 10 ns)

ABALONE at 8 kV ABALONE at 12 kV

SiPM Photo-detectors

https://arxiv.org/pdf/22 01.01632v2.pdf

Radiopure SiPM-based photodetectors are a reality

- Design and realization at LNGS
- 10 x10 cm² with aggregated output

This technology now has to be ported to xenon

- Selecting the right SiPMs
- The electronics is already designed and working
 - Including radiopure components, packaging techniques, ...

SiPM tests and plan

We need to measure NUV-HD-Cryo SiPMs in xenon with PEN (and others WLS)

- To estimate the LY and the correlated noises
- We will need to test newest SiPM with metal trenches

We need to measure newest VUV-HD-Cryo SiPM to verify the DCR & correlated noises

- An R&D for BSI VUV SiPM is ongoing with NEXO:
 - PDE may increase to 30-40%
 - iCT can decrease to 5% & AP is already very low for newest NUV devices
 - <u>DCR may still be an issue</u> (need to go to 0.01 cps/mm² not sure it is possible)
- We need to stay tuned to the R&D testing samples

Constraints for DARWIN electrodes

High voltage constraints for DARWIN

- Need sufficient drift field for particles to go towards the gas
- Need sufficient extraction efficiency in gas
- High HV values for cathode in liquid and anode in gas
- Tension for wires or meshes is high

IFD 2022 - Bari 17-19/10/22

DARWIN electrodes dimensions: ~**2.6 m diameter** and ~**30 mm thick**

From these constraints:

- maximum HV for the cathode
- maximum field between anode and gate
- local maximum allowed S2 variation
- So far XENON detectors employed:
- Wire mesh
- Parallel wires grid

Transparent conductive electrodes (TCEs)

Idea:

• Use TCEs with deposited on transparent substrate

GOAL of the R&D:

- Explore different solutions for the TPCs in terms of:
 - Transparency (at both 175 nm and 440 nm)
 - Electrical conductivity
 - Mechanical stability
 - Thermal stability
 - Electrical stability

Next steps:

- 4 additional larger prototypes (~20 cm diameter) made of:
- AIN/ITO
- Silver nanowires
- Copper nanowires
- Graphene

Current status

- Very good transparency for graphene
- No effect to air exposition or other

Study in collaboration with the CREO, <u>www.consorziocreo.com</u> , Centro di Ricerche Elettro-Ottiche

IFD 2022 - Bari 17-19/10/22

Ferella - R&D for DARWIN

Wavelength shifter

Why not using a wavelenght shifter?

178 nm is still a challenging wavelength:

- Quartz transmissivity ~ 80 85 % with 2.5 mm thickness
- Photocathode sensitivity is maximal at 420 nm
- Most TCEs are developed for optical light applications

Back of the envelope calculation:

- Total collection efficiency with NUV-SiPM ~30%
 - PEN: ~60% efficiency
 - SiPM: ~50% PDE
- To be compared with PMT ~ 30%:
 - QE ~ 40%
 - Fill factor ~ 70%

The end

IFD 2022 - Bari 17-19/10/22

Ferella - R&D for DARWIN

IFD2022 - INFN WORKSHOP ON FUTURE DETECTORS

Gd-loaded Water Cherenkov Detectors

XENON

DARWIN

Andrea Mancuso - INFN & Università di Bologna

Water Cherenkov Detectors

• Large number of protons (p decay, target for neutrino interactions)

Neutrons

- Low energy for capture on p (close to Cherenkov th.)
- Low capture cross section (~0.3 barns)

+ Gadolinium (Gd)

Gd has the largest cross section for the capture of thermal neutrons

Idea: enrich WC detectors with a water soluble gadolinium (Gd) salt.

 $Gd(NO_3)_3$

- easily soluble
- good Cherenkov light transparency
- suitable to be used in a detector (no reactive)

n Neutron capture by gadolinium:

- EGADS & Super-K
- XENONnT

Neutron Veto of XENONnT

XENONNT - Dark Matter Direct Detection Experiment (WIMP)

Three nested detectors:

- Muon Veto
- Neutron Veto
- Dual Phase (LXe+GXe) Time Projection Chamber (TPC)

Radiogenic Neutrons are one of the main background !

Neutron Veto:

High Reflectivity Volume + Large PMT coverage

- Inner region optically separated from the Muon Veto through high reflectivity ePTFE panels
- Instrumented with 120 low-radioactivity, high-QE PMTs
- Currently operating with demi-water only

Neutron Veto of XENONnT

Neutron detection:

Radiogenic neutrons scatter in TPC : WIMP-like signal

- by the PMTs

Performances

dedicated calibration (AmBe source)

Tagging Eff. = (0.682 ± 0.026)

$$\tau_{\text{n-capture}} = (177 \pm 8) \, \mu s$$

TPC dead time due to the veto (5%)

 Thermalization of n in water Neutrons captured by Gd (~ 90%) and H (~ 10%)

τ ~ 30 μs

 Cascade of y-rays with total energy of 8 MeV Cherenkov emission from Compton electrons detected

Gd - Water purification plant

- Used to dissolve the Gd–Sulphate inside the Neutron Veto water
- Separate the Gd-rich fraction, purify the Gd-depleted water and unify back the two parts
- Maintain good quality of the water transparency, which affect the light collection efficiency of the Neutron Veto

Conclusions

- Gd-loaded Water Cherenkov detectors have been employed to detect neutrons both to enhance some physics channels (SK) and to suppress the background (XENON);
- The Neutron Veto of the XENONnT experiment exploits this technology to reduce the radiogenic neutrons background, which is one of the main backgrounds for the WIMP search.
- Overall the system showed very good performances with demi-water **best n-tagging** efficiency ever achieved with a pure water Cherenkov detector - and the tagging efficiency will be enhanced after the deployment of the Gd salt
- The same technology can be employed for larger-scale detectors : DARWIN
- Several R&D to increase the Gd concentration without losing water transparency and with an efficient recovery of the salt.

IFD 2022 17–19 Oct 2022 Bari, Villa Romanazzi Carducci

Detection of Cherenkov light in liquid scintillators

<u>Federico Ferraro</u>, Davide Basilico, Marco Beretta, Augusto Brigatti, Barbara Caccianiga, Simone Cialdi, Cecilia Landini, Paolo Lombardi, Marco Malabarba, Gioacchino Ranucci, Alessandra Re, Gioele Reina

Università degli Studi di Milano INFN-Sezione di Milano

What am I talking about?

Since **scintillation light** is isotropic, any directional information is lost

However, a few **Cherenkov light** is emitted and provides information on the **neutrino direction**

The separate detection of scintillation light and Cherenkov light in a liquid scintillator:

- would open up new possibilities for present experiments (e.g.: JUNO)
- would pave the way to a new generation of experiments exploiting both detection techniques (e.g.: THEIA)

The separation can be realized thanks to timing and/or spectral features

Timing, spectral and optical features of liquid scintillators

1. measurement of **fluorescence time**

- a. measurements with $\alpha/\beta/p$ radioactive sources
- b. measurements with muons
- c. fit and investigation on systematics

2. detection of Cherenkov light

- a. LS emission and absorption spectrum
- b. spectral features of Cherenkov light
- c. timing features of Cherenkov light

3. measurement of refractive index

- a. compact refractometer with LS cuvette
- b. CW lasers (208 nm to 1035 nm)
- c. beam displacement on CCD
- 4. measurement of group velocity
 - a. compact interferometer with LS cuvette
 - b. short coherence-length lasers (208 nm to 1035 nm)
 - c. fringe displacement on CCD or SiPD

- → improved event reconstruction
- → particle identification via PSD
- → improved description of fluorescence parameters in the JUNO MC

- → improved understanding of the energy response
- → reconstruction of the direction of incident neutrino
- → Improved reconstruction of interaction vertex

4

SHELDON (Separation of CHErenkov Light for Directionality Of Neutrinos)

A quasi-tabletop experiment to improve the reconstruction performances in JUNO

1. measurement of **fluorescence time**

- a. measurements with $\alpha/\beta/p$ radioactive sources
- b. measurements with muons
- c. fit and investigation on systematics

2. detection of Cherenkov light

- a. LS emission and absorption spectrum
- b. spectral features of Cherenkov light
- c. timing features of Cherenkov light
- 3. measurement of **refractive index**
 - a. compact refractometer with LS cuvette
 - b. CW lasers (208 nm to 1035 nm)
 - c. beam displacement on CCD
- 4. measurement of group velocity
 - a. compact interferometer with LS cuvette
 - b. short coherence-length lasers (208 nm to 1035 nm)
 - c. fringe displacement on CCD or SiPD

5

SHELDON (Separation of CHErenkov Light for Directionality Of Neutrinos)

A quasi-tabletop experiment to improve the reconstruction performances in JUNO

1. measurement of **fluorescence time**

- a. measurements with $\alpha/\beta/p$ radioactive sources
- b. measurements with muons
- c. fit and investigation on systematics

2. detection of Cherenkov light

- a. LS emission and absorption spectrum
- b. spectral features of Cherenkov light
- c. timing features of Cherenkov light
- 3. measurement of **refractive index**
 - a. compact refractometer with LS cuvette
 - b. CW lasers (208 nm to 1035 nm)
 - c. beam displacement on CCD
- 4. measurement of group velocity
 - a. compact interferometer with LS cuvette
 - b. short coherence-length lasers (208 nm to 1035 nm)
 - c. fringe displacement on CCD or SiPD

Fluorescence + Cherenkov light emission model

The **Cherenkov** contribution is modeled as a delta function

The **fluorescence** contribution is distributed as a superposition of exponential distributions

The **sum** is convolved with the detector Impulse Response Function

IRF(t) =
$$\sum_{j=1}^{7} N_j G_j(t; \mu_j, \sigma_j)$$

 $F_{Total}(t) = [N_{Ch} \,\delta(t, t_0) + (1 - N_{Ch}) \,F_{Fluo}(t)] * \operatorname{IRF}(t)$

Inclusion of Cherenkov light ⇒ improved <u>PSD</u> parameters

impacts the measurement of fluorescence times significantly!

SHELDON (Separation of CHErenkov Light for Directionality Of Neutrinos) A quasi-tabletop experiment to improve the reconstruction performances in JUNO

Same goal, different measurements:

- 1. measurement of fluorescence time
 - a. measurements with $\alpha/\beta/p$ radioactive sources
 - b. measurements with muons
 - c. fit and investigation on systematics

2. detection of Cherenkov light

- a. LS emission and absorption spectrum
- b. spectral features of Cherenkov light
- c. timing features of Cherenkov light
- 3. measurement of refractive index
 - a. compact refractometer with LS cuvette
 - b. CW lasers (208 nm to 1035 nm)
 - c. beam displacement on CCD
- 4. measurement of group velocity
 - a. compact interferometer with LS cuvette
 - b. short coherence-length lasers (208 nm to 1035 nm)
 - c. fringe displacement on CCD or SiPD

Spectral separation of Cherenkov light

Spectral separation of Cherenkov light

SHELDON/REWIND (Refractive indEx With INterferometric Devices)

Same goal, different measurements:

- 1. measurement of fluorescence time
 - a. measurements with $\alpha/\beta/p$ radioactive sources
 - b. measurements with muons
 - c. fit and investigation on systematics
- 2. detection of Cherenkov light
 - a. LS emission and absorption spectrum
 - b. spectral features of Cherenkov light
 - c. timing features of Cherenkov light

3. measurement of **refractive index**

- a. compact refractometer with LS cuvette
- b. CW lasers (208 nm to 1035 nm)
- c. beam displacement on CCD
- 4. measurement of group velocity
 - a. compact interferometer with LS cuvette
 - b. short coherence-length lasers (208 nm to 1035 nm)
 - c. fringe displacement on CCD or SiPD

Both SHELDON and SHELDON/REWIND are very-small-scale R&D activities whose realization relies on **prompt micro-financing**

The same applies to LArRI (Liquid Argon Refractive Index), that I will mention later

UNIMI: Piano Sostegno alla Ricerca - linea 2A INFN: in-kind

Measurement of refractive index and group velocity

Refractive index

- refractometer
- CCD sensor

Group velocity

- Interferometer
- Photodiode

Relative sensitivity: ~10⁻⁴

Community and ongoing R&D (disclaimer: this list is not complete)

Organic Liquid Scintillators LAB-based (JUNO, SNO+, [...])....

Water-Based Liquid Scintillators THEIA.....

..**SHELDON** (looking forward to JUNO) CHESS (looking forward to THEIA)

Noble Liquid Scintillators

Innovative photon detectors LAPPD..... Dichroicons.....

....on-the-shelfCHESS these ones need extra effort because of cryogenics and short wavelength

h	I	-	1.6	-	-		-		~	
	I	ы	u	O	r	T	T	Т	S	
				-					_	

ANDIAMO, an innovative acoustic neutrino telescope proposal

Andrea Simonelli, Antonio Marinelli, Pasquale Migliozzi **INFN sezione di Napoli**

Control Room

Motivations

- The availability of a large number of inactive oil platforms permits to realise a detector of unprecedented size: 10000 Km² and a volume ~ 500 Km³ with low costs
- Most of the acoustic array setup installed up to now where linked to Cherenkov telescopes or already existing military arrays, A dedicated large volume undersea/ice acoustic neutrino telescope would be preferred
- Giant steps in signal processing, computing, data storage since the last attempts were made
- We have nowadays dedicated digital hydrophones with ARM processors for onboard trigger/preprocessing for signal discrimination
- Multidisciplinar application (geophysics, marine biology)
- The experience with KM3NeT underwater technologies is a plus

Experiment	Location	Medium	Sensor	Host
			Channels	Experiment
SPATS [19, 20]	South Pole	Ice	80	IceCube
Lake Baikal [7]	Lake Baikal	Fresh Water	4	Baikal Neutrino
				Telescope
ΟvDE [21]	Mediterranean Sea (Sicily)	Sea Water	4	NEMO
AMADEUS [22]	Mediterranean Sea (Toulon)	Sea Water	36	ANTARES
ACoRNE [23]	North Sea (Scotland)	Sea Water	8	Rona military array
SAUND [24]	Tongue of the Ocean	Sea Water	7/49 ^(*)	AUTEC military
	(Bahamas)			array

former acoustic experiments

(*) The number of hydrophones was increased from 7 in SAUND-I to 49 in SAUND-II

A.Simonelli - IFD2022 INFN workshop on future detectors, Bari

AstropartPh Volume 143, October 2022, 102760 A.M., P.Migliozzi, A.Simonelli.

- Reuse the powered ENI oil rigs
- Take advantage of the Adriatic favourable conditions
- Use the ray tracing techniques in a shallow water environment and the advances in computing (from last attempts of 30+y ago)
- Possibility to reach an unprecedented instrumented surface ~ 10000 Km² and a volume ~ 500 Km³ with low costs

Ray tracing and surface covered

exploiting advances in processing techniques and computational power

A.Simonelli - IFD2022 INFN workshop on future detectors, Bari

Simulated spectra for different distances and cascade energies

Istituto Nazionale di Fisica Nucleare

AstropartPh Volume 143, October 2022, 102760 A.M., P.Migliozzi, A.Simonelli.

A.Simonelli - IFD2022 INFN workshop on future detectors, Bari