Liquid Argon Detectors for GeV Neutrinos

INFN Workshop on Future Detectors – 18 Oct 2022

OUTLINE

DUNE experiment will exploit 4 different technologies:

- TPC Horizontal Drift (à la ICARUS)
- TPC Vertical Drift

- \rightarrow Consolidated Technology (anode: wires)
- → Simplified Technology (anode: PCB)

- TPC Horizontal Drift Modular
- Scintillation light for imaging

- \rightarrow High occupancy (anode: pixel)
- \rightarrow Innovative (use only scintillation light)

The Deep Underground Neutrino Experiment

- Next generation long baseline neutrino experiment: 1300 km from Fermilab to SURF (South Dakota), 4300 m water equivalent depth
- Very intense wide band v_{μ} / anti- v_{μ} beam (0.5 7 GeV): 1.2 MW, upgradable to 2.4 MW
- Two detectors locations, Near/Far
- Giant Liquid Argon (LAr) TPC detectors as Far Detector (FD, total 70 kTons)
- Near Detector (ND) is a complex including a Segmented LAr (67 kTons) + Small LAr (1 kT)
- Worldwide Collaboration: 1300+ people, 200+ institutions including CERN, 34 countries

The DUNE Far Detector complex

- Four independent detector modules:
 - Single Phase LAr-TPC modules, 17 kT mass each module (62x14x15 m³)
 - FD1: Horizontal Drift (HD)
 - FD2: Vertical Drift (VD)
 - FD3: Ongoing R&D
 - FD4: Ongoing R&D

FD1

FD1: LAr-TPC Horizontal Drift technology

- Alternate Anode and Cathode Planes
 Assemblies (APA/CPA)
 - Segmented: 4 drift volumes, drift distance: 3.5 m
 - Electric field = 500 V/cm (HV= -175 kV)
 - High resistivity CPAs to prevent fast discharges
 - Anode: 150 APAs (6x2.3 m²) 4 wire planes each grid, 2x Induction, Collection
 - Wire pitch 4.7 mm
 - Full cryogenic readout chain (analogue FE+ Digitizer) – 385000 channels
- Photon Detectors:
 - X-ARAPUCA SiPM based light traps integrated into APA frame

Photo Detector System: X-Arapuca

- Challenges
 - Emitted photon wavelength
 128 nm
 - Difficult detection
 - Easily absorbed by impurities
 - Large detection area is needed but there is not available space for large area Photomultipliers

• X-Arapuca advantages

- It traps the light and shift photons' wavelength to ~128nm
- More light opens additional physics opportunities like calorimetry and triggering

Photon Detection System (HD): X-Arapuca

X-Arapuca Module

INFN

FD2

FD2 Vertical Drift technology

From experience on the R&D with ProtoDUNE, new solution for the FD2 design:

- Outstanding LAr purity \rightarrow Long drift possible
- Excellent S/N for electronics \rightarrow amplification in gas not needed
- Vertical Drift layout simpler to install, PCB boards for anodes exportable to industry \rightarrow reduce cost and time
- Xenon doping improves light yield more uniform light collection over large distances

Perforated PCB anode

- LAr TPC readout with perforated multilayer Printed Circuit Boards
 - Electrons are 2D focused in the PCB holes
 - Signals are induced on the strips on both sides as electrons approach and leave
- Improvements wrt wires:
 - Most components can be mass produced commercially
 - No risk of breaking wires, simple mechanics
 - Integration of FE electronics/cable connectors on interface PCBs
- The design took advantages of large area Thick GEMs

2 PCB stack, 3 views

PCB thickness 3.2 mm, distance 85 mm

Photon Detection System for VD

- PD modules (60 cm x 60 cm) based on X-Arapuca concept of HD
 - Placed on cathode and long walls
 - Xe doping (min Rayleigh scatter)
- Electrically floating photosensors and electronics
 - Power IN and Signal OUT via optical fiber

Near Detector Complex

ND-LAr

GRAIN

GRanular Argon for Interaction of Neutrinos

Inside ECAL: 1kton LAr + STraw Tubes for tracking

Innovative LAr imaging

Use only scintillation light to reconstruct tracks, we need:

- Optics working at 128 nm:
 - Coded Aperture Masks
 - Lens
- Single Photon Photosensors:
 - VuV sensitive SiPMs matrices (TPB coating for WLS, Backside Illuminated??)
- LowPower crygenic electronics for High density channels:
 - Cryogenic ASIC for SiPMs (critical path !!!)

Photosensors for a demonstrator

- Matrices of Silicon PhotoMultipliers
 - From Hamamatsu different models and sizes (to be coated with WLS)
 - Choose to work now with 16x16 matrices of 1x1 mm² or 3x3 mm² SiPM
 - 256 is the maximum channel count we can afford with presently available electronics (ASIC)

Lenses for demonstrator

- Lens cameras inside the LAr volume
- 38 cameras, for maximum coverage
 - 14 pairs on the sides
 - 5 pairs on top/bottom
- Assume 32x32 matrix sensor, with 2 mm pixels and 20 % QE

Simulation of lens imaging

Coded aperture masks

Coded aperture mask techniques were developed as the evolution of a single pinhole camera

 matrix of multiple pinholes to improve light collection and reduce exposure time

Image formed on sensor is the superimposition of multiple pinhole images.

Advantages:

- Good light transmission (50%)
- Good depth of field
- Small required volume

3D reconstruction with masks

- Volume divided in voxels
- Search for the most probable light sources compatible with sensor response (number of photons for each SiPM in the matrix)
- O(10k) channels

- Matrix of SiPMs mounted on a mezzanine board
- Motherboard contains 8 ASIC (256 ch in total)
- DAQ with FPGA on demo board
- To couple with the optics (lenses or masks)

Considerations on ASIC

- For this prototype we used the already available ASIC ("Alcor") developed by INFN-Torino for other target applications (test in LN2 ongoing)
- It features Time Over Threshold frontend and High Rate capability (that implies high power consumption)
- This ASIC as it is now, does not fit perfectly with our needs: dynamic range starting from few photons, lower rate, high multiplicity of channels, but hopefully will allow to start dealing with real data.
- ASIC development for our specific case is critical..

ND-LAr

ND-LAr modular design

- Modular design to cope with high track multiplicity in a spill
- Pixelated charge readout
- High Photodetector coverage

Geant4 simulation of a spill at 1.2 MW

ND-Lar pixelated readout

- Provides unumbiguous 3D tracking of charged particles
- Low-power, low-noise integrating amplifier with self-triffered digitization and readout
- Charge stays on pixel until digitization and/or reset
- Always active continuous self-triggering

ND-LAr light collection

- High coverage
- Fast readout
- High rate capability

ND-LAr 2x2 prototype

- Single module already tested
- 4 module prototype going to be tested..

File datalog_2021_04_02_22_38_12_CESTevd.h5 Event 69866, 618377 us w.rt PPS, 2021-04-02 20:53:39 UTC

BACKUP

The DUNE experimental program

- Three-flavour Long-Baseline neutrino oscillation
 - Precise neutrino oscillation parameters for v_e / anti- v_e appearance , v_μ / anti- v_μ disappearence searches, CP violation, mass hierarchy in the vsector
- Supernovae Neutrino Burst
 - Large sample of neutrinos for SNB in our galacy flavour content, spectra, time evolution of SNB neutrinos
- Beyond Standard Model
 - Proton decay, baron number violation, ^{*p*} ^{*u*} sterile neutrinos, non-standard ^{*d*} interactions and more

Detector requirements:

- LARGE detector mass (70 kt)
- Long baseline (1300 km)
- Good energy resolution up to GeV (TPC)
- Efficient particle identification (K[±], e⁻, v_i)
- Low cosmic ray background (underground)
- Timing for non-beam events (PD system)
- Low energy threshold (good S/N + high LAr purity)

The Single-Phase LAr-TPC

- Ionization electrons [5fC/cm] drift to the anode in pure LAr & uniform E-field (500 V/cm)
 - Few mm pitch and MHz sampling frequency
 - 3D via multiple 2D views (wire vs drift time)
 - High imagin capabilities, kinematic reconstruction with mm scale spatial resolution
 - Intrinsecally excellent Calorimetry and particle identification (dE/dX) capability
- Prompt scintillating light (@128 nm)
 - T=0, trigger, calorimetry

LAr as radiation medium

- Dense: 40% more than water
- Abundant primary ionization: 42k e⁻ / MeV
- High electron lifetime if purified, long drifts
- High ligth yield: 40k γ / MeV
- Easy available: 1% of the atmosphere
- Cheap: 2\$/L (3000\$/L for Xe, 500\$/L for Ne)
- Technological challenges
 - LAr purification <<0.1 ppt O2 eq (>> 3 ms electron lifetime) long drift
 - Imaging & anode planes
 - Very low noise frontend amplifiers to detect fC primary charge deposition
 - Large area photon detectors sensitive to 128 nm wavelength
 - HV system to provide uniform/stable E-field in large drift volume
- **Pionered by ICARUS** and adopted in present and next generation neutrino experiments (µBone, SBND, DUNE)

X-Arapuca Supercell

Vertical Drift architecture

Designed to maximize active volume

- Readout units cole to LAr surfave and cryostat floor
- Catode at middle height: better HV stability due to LAr hydrostatic pressure
- 6.5 m drift, 450 V/cm, 300 kV on Cathode
- Perforated PCBs with segmented electrodes (strips) as readout units
 - Good planarity (lightweight) and robust
 - Optimizable strip orientation, pitch, lenght
- Modular supporting structures for readout planes
 - Derived from CRP design of DP
 - Incorporates cathode hanging system
- Single Field Cage surrounding entire active volume
 - Derive from DUNE-DP design
- Photon Detectors based on X-Arapuca technology (DUNE-SP)
 - Integrated on cathode plane and cryostat walls
 - Decoupling from HV achieved with optical fibers for signal and power transmission

DUNE prototypes at CERN

5000

4800

_국 4600

F 4400

4200

Two 750 t prototypes 8x8x8 m³ at Neutrino Platform

- ProtoDUNE phase 1
 - ProtoDUNE SP took data 2018-2020
 - Charged particles beam of 0.3-7 GeV (e⁺, π , μ ,K, p⁺)
 - ProtoDUNE DP took data 2019-2020
 - Very high voltage and large drift studies
 - Evolved into Vertical Drift technology
- ProtoDUNE phase 2
 - It was expected to start in early 2023 but delay Argon availability
 - Improve with lesson learned from Phase 1
 - Validate technology of 1° FD module (HD)
 - Baseline design for 2° FD module (VD)

Summary on Simulation

- We setup a suite based on Geant4 that can simulate the time of arrival of all photons on the SiPM sensistive area, taking into account:
 - Fast and Slow component of scintillation process
 - Response of the detector and the FE electronics
 - Simulation of the whole 10 usec spill, including all possible sources of background
- Work is going on (limited by computing time) to use this information to define the requirements for the ASIC:
 - o Charge integration or TDCs or_?
 - Output data rates
 - Inner vessel feedthroughs,,,

Results expected in short time !!!

