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The Challenge

At present, difficult to operate silicon sensors above 10'® n,/cm?

The goals

> Measure the properties of silicon sensors at fluences above 10%* n.,/cm?
> Design planar silicon sensors able to work in the fluence range 10'® — 107 n.,/cm?

> Estimate if such sensors generate enough charge to be used in a detector exposed to extreme fluences

The strategy

To overcome the present limits above 10'® n.,/cm? we exploit:

1. Saturation of the radiation damage effects above 5-10*> n.,/cm?
2. The use of thin active substrates (20 — 40 um)

3. Extension of the charge carrier multiplication up to 10!/ n,,/cm?

— The whole research program is performed in collaboration with FBK
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Low-Gain Avalanche Diodes

Low-Gain Avalanche Diodes (LGADs) are n-in-p silicon sensors

Operated in low-gain regime (~ 20) controlled by the external bias
p* ~ 10 atoms/cm3 Critical electric field Ec ~ 20 — 30 V/um — gain layer region

p ~ 102 gtoms/cm3

Eﬂeld
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Low-Gain Avalanche Diodes — Innovation

Low-Gain Avalanche Diodes (LGADs) are n-in-p silicon sensors

depth
11 Operated in low-gain regime (~ 20) controlled by the external bias
: p* ~ 10 atoms/cm3 Critical electric field Ec ~ 20 — 30 V/um — gain layer region
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From Simulation to Production

V. Sola et al.

Process simulations of Boron (p*) and Phosphorus (n*) implantation have been performed

The electrostatic simulation shows that it is possible to optimise the production process to replicate

the operation conditions of standard LGADs
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— The first batch of compensated LGAD is about to be delivered by FBK
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From Simulation to Production

V. Sola et al.

Process simulations of Boron (p*) and Phosphorus (n*) implantation have been performed

The electrostatic simulation shows that it is possible to optimise the production process to replicate
the operation conditions of standard LGADs
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— A 3 years project has been accepted for funding by AIDAinnova as Blue Sky R&D
to investigate and develop the compensated LGAD design
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ARCADIA (INFN CSNV Call Project) @

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

Fully Depleted Monolithic Active Pixel CMOS sensor technology platform allowing for:

*

*
*
*

* X

Active sensor thickness in the range 50 pm to 500 pm or more;
Operation in full depletion with fast charge collection by drift, small collecting electrode for optimal signal-to-noise ratio;
Scalable readout architecture with ultra-low power capability (0(10 mW/cm2));

Compatibility with standard CMOS fabrication processes: concept study with small-scale test structure (SEED),
technology demonstration with large area sensors (ARCADIA)

Technology: 110nm CMOS node (quad-well, both PMOS and NMOS), high-resistivity bulk

Custom patterned backside, patented process developed in collaboration with

nwell guard ring

, (dedicated pad) Perypheral
Pixel array electronics

n-epi \ /
Vo
Substrate contacts
(holes in deep pwell)
n-sub "*\ "Fully Depleted MAPS in 110-nm CMOS Process With 100-
300-um Active Substrate," in IEEE Transactions on Electron
Devices, June 2020, doi: 10.1109/TED.2020.2985639.

side contact: glued on package with
ti poxy
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2 ARCADIA-MD1a/b Main Demonstrator

2 ARCADIA-miniD (debug)

2 ARCADIA-miniD with on-chip LDOs for large-scale yield management

2 MAPS and test structures for PSI (CH)

2 MATISSE Low Power (ULP front-end for space instruments)

2 pixel and strip test structures down to 10um pitch

2 ASTRA 64-channel mixed signal ASIC for Si-Strip readout

2 32-channel monolithic strip and embedded readout electronics

2 (LC2Z) MATISSE_TIMING: VFE for fast timing (R&D for ALICE3 timing layers)
2 (LC3) Small-scale demonstrator of a X-ray multi-photon counter

2 (LC3) Wafer splits with timing layer, new R&D towards <<100 ps timing

performance: test structures and multi-pixel active demonstrator chip

ARCADIA: an INFN Platform for Fully Depleted MAPS in a 110-nm CMOS Process IFD2022 - INFN Workshop on Future Detectors



I ARCADIA Design and Test Platform

3k ARCADIA: CMOS sensor design and fabrication platform with several groups working on:
2 Sensor R&D and Technology
CMOS IP Design and Chip Integration

Data Acquisition for electrical characterisation and beam tests with multi-chip telescopes

Radiation Hardness qualification

Yy V V V¥V

System-level characterisation for Medical (pCT), Future Leptonic Colliders and Space

3 Allocated budget = 1.4AMEur (INFN and external funds) for 3 full SPW runs (2020-2022), 52
Members from 7 INFN Divisions. Moving from a CSN5 Call into RD_FCC, AIDAinnova, ALICES.
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Outlook: ARCADIA... or CMOS DMAPS in general INFN

% Monolithic active pixel sensors are now ubiquitous in HEP trackers and are making their inception
into (low-power) space, (high-rate) medical applications. Cost effective reticle scale sensors, compatible
with standard CMOS fabrication, could pave the way to very large area tracking and timing detectors

¥ CMOS Depleted monolithic pixel (and strip) sensors are now a strong candidate both for future low
material budget silicon trackers and for timing layers, with investment and R&D mostly focusing on:

< very low-power architectures 0 (20 mW/cm?)
< process engineering for better time resolution O (100 ps) or better
< larger and thinner chips towards all/only-silicon inner trackers

¥ We need to foster access to advanced technologies and foundries, and make a good use of the most
advanced integration and industry standard wafer stacking/bonding techniques

% The federation of the activity on sensors and microelectronics, working alongside experts on detector,
system integration and analysis will dramatically increase our scientific impact factor.

4 Manuel Rolo [INFN] ARCADIA: an INFN Platform for Fully Depleted MAPS in a 110-nm CMOS Process IFD2022 - INFN Workshop on Future Detectors
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Organic Films

Printed large area perovskite film

Organic Single Crystals
Perovskite Films
. Perovskite Single Crystals

bON

Hybrid

BHJ:Bi203 %@

blend

Flexible OSC

First lead-free PSC
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High-sensitive full-organic
thin-film
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Flexible Perovskite X-ray detectors

0 72
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2014 2016 2018 2020 2022
Year §
Perovskite-filled membrane (PF) ‘ g

S. Demchyshyn, L. Basirico et al..
Adv. Science, 2020, 7, 24, 2002586

Novel ionizing radiation detectors based on perovskite film

Hybrid Organic/Inorganic Lead
Halide Perovskites (HOIP)
Why?

=% High perfoming,

solution processed optoelectronic devices

#
tens of cm?2/Vs

#
Heavy atoms (eg. Pb) inside

Attenuated x-ray fraction

High charge carriers mobility

High XR attenuated fraction:

L. Basirico et al., Adv.
Mater. Technol.
2020, 2000475

x-ray energy
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2D layered HOIP micro-crystalline films photoconductor

3D HOIP PEA,PbBr, (PEA = C;H;C,H,NH;")
charge carriers strongly confined in the inorganic layers

X Low bulk resistivity
X High trap states density highly anisotropic charge transport
X Significant |on' ml.grat.lon effects o high resistivity due to low intrinsic charge carrier density,
X Fast degradation in air and in radiative fields . .

suppressed ion migration.

Environmental stable due to low oxidation

= |arge dark current drift and poor stability!

electronic structure is akin to a multiple quantum well

B 1 .oy nm 1
1. Solution droped on Au/Cr . . ' 5 g g % g
patterned substrate 2. Spin-coating + annealing gl 2 = = - — 1
w g = & & lm&\iﬁ |
X-Rays ﬂx
= % Perovskite
. i A7
2D perovskite v i \1/ NZAN7 \)_\J/ N -
g . $ee e s R
Interdigitated ] ? ? ? ? A.Ciavatti et al., Adv.Optical Mater., 2021
electrodes ' —~— PN /'\ /'\ c 10.1002/adom.202101145
- i N/ \1/ \1/ N \1/
PET substrate Cr/Au digits - ee oo e e !




2D (PEA2PbBr4) X-ray direct direct detection

il
q) v Tested energy range from 40kVp to 150 kVp

" q;( o i v’ Operative bias from 3 V to 100 V
—_ . 10 é
= j: v" Sensitivity > 800 uC/Gy cm2? = comparable to best (but
5 o2 & . §

Il j}m 0'g less stable) film detectors
N T R T v" SNR of 102 at 2 pGy/s (typical mammography)
Time (s) 1
Dose rate (uGy s )
(e) , f) . y v Limit of Detection down to 42 nGy/s (best for thin film
o 150KV 0oV 100V
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 Stable to repeated pulses (300 pulses for 30 minutes@80V). o.o{\_" . J .
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time (min)



ANEMONE (esperimento CSN V)

2022-2023 Area di ricerca: Rivelatori
RN: Laura Basirico (INFN- sezione Bologna)

hAdroN bEam MONitoring by pErovskite based detectors P

MAIN AIM:
Development of the first PEROVSKITE (Hybrid and Inorganic) film-based real-time
direct detector for PROTONS and IONS, as beam monitor for hadron therapy and as
beam test tool for high-energy experiments, realized on flexible substrate.

MAPbBr,

PEAPbBr3 Mixed 3D/2D Hybrid organic-

200000 inorganic halide perovskite:
@ AL AT Al A MAPbBr,/ PEA,PbBr,
4 #

Perovskite hadron detector S°|“t"_m grown on PET
flexible substrate

N f
|
Exit Dose .

* INFN Bologna section (INFN-BO)
« Laboratori Nazionali del Sud (LNS)
* INFN Firenze section (INFN-FI)

4 OBJECTIVES: )

i) Unravel the interaction of charged particles with nanostructured hybrid
and inorganic perovskite films to design novel detectors.

ii) Design and optimization of the most performing PVK-based active layer
(hybrid and inorganic) and detector layout for hadron detection.

iii) Test under relevant proton/ion irradiation and dosimetric
characterization (at TIFPA, CNAO, LNS facilities) for beam monitoring

\_ application during hadrontherapy treatments.

J

/ Activity M1-6: DEVICE FABRICATION - STRUCTURAL, MORPHOLOGICAL

CHARACTERIZATION — PRELIMINARY TESTS @LABEC
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ALICE ITS3: motivation and detector concept

Azimuthal angle [°]
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Requirements Key ingredients . o
» Removal of water cooling » Wafer-scale sensor fabricated using stitching

— possible if power consumption stays below 20 mW/cm2  ” Sensor thickness 20-40 ym

— move to (low flow) air cooling system » Chips bent in cylindrical shape at target radii
» Removal circuit board (power+data) » Si MAPS sensor based on 65 nm technology
— possible if integrated on chip » Carbon foam structures
» Removal of mechanical support » Smaller beam pipe diameter and wall
— benefit from increased stiffness by rolling Si wafers thickness (0.14% Xo)
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ALICE ITS3: R&D lines - Bent sensor performance

S 40000 %—
Bent ALPIDE % I ALICE ITS3 Preliminary
2 35000 = Effect of curvature on pixel thresholds
(MAPS used tO assembly ITSZ) o E for50pmALPIDEon::arrierboardd
https://arxiv.org/pdf/2105.13000.pdf 30000 = 2020-05-27-003
25000 ; gztnt to 16 mm
20000 i_ curvature radius
150002—
10000 —
5000
O 0 " o0 150 200 TR T 300
Threshold (e )
- 10-? 511 0.0°
- 447  14.9°
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2T
gt 1319 |14.6°
J )
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ot Change ﬁ 104 {--- FinTis feon ad ST . S 4 SERET ., 0., ... 5 999%eff|c|ency ...... 127 [ 59,20
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https://arxiv.org/pdf/2105.13000.pdf

ALICE ITS3: R&D lines - Detector Integration

Beam pipe inner/outer radius (mm) : 16.0/16.5 truly c.ylindrical
"""""""""""""""""""""""""""""""" I e S detection layers
R IB Layer Parameters i LayerO i | Layer 1 i Layer2 |
____________ Radial position (mm) | 180 i 240 i 300 |
_____ Length of sensitive area (mm) : 3000 |
______ Number of sensors perlayer  : 2 |

Pixel size (pm2) i O (10 x 10)

The whole detector will comprise six
chips and barely anything else!

Silicon bending tools

Wire-bonding
on curve surface

" 50 um thick
== Si dummy chip

IFD 2022: INFN Workshop on Future Detectors, 17 - 19 October 2022, Bari, Italy | D. Colella and C. Pastore, University and INFN Bari 3



ALICE ITS3: R&D lines

- Sensor design

» Tower Semiconductor (TPSCo) 65 nm SMOS IS technology
« TPSCo 65 nm continuation of the TowerJazz 180 nm (ITS2) ;
« scoped within CERN EP R&D WP1.2, significant drive from ITS3

« 300 nm wafers — 27 x 9 cm?

- 7 metal layers

« Process modifications for full depletion:
- Standard (no modifications)
« Modified (low dose n-tope implant)

- Modified with gap (low dose n-type implant with gaps)

» MLR1: first test submission \
- Main goals: learn technology features, characterise
carte collection, validate radiation tolerance

« Submitted Dec. 2020 - Received Jul. 2021

) Two output drivers:
- Traditional source follower (SF)
- Very fast OpAmp (OP)

- 32 x 32 pixel matrix
- Asynchronous digital readout

k - Tunable power vs time resolution [&sa e |

» ER1: first stitching implementation
« MQOSS : focus on technology options, power
distribution, signal routing, yield
- MOST : focus on yield with high density layout parts
and fine power segmentation

M OSS Repeated Sensor Unit

Endcap L Endcap R
Pads 1 Peripheral circuits 2 Pads N~ 10 Pads

T

E I { F

€ sEiin

:ﬁn Euu— e  dnmmman o

l e == o e e
2.45mm -
' +«—— 25.5 mm — Peripheral circuits Pads

-
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Time resolution of 3D silicon
sensors with trench electrodes

Development, test and characterisation

Angelo Loi




Technology and desigh  +ine,

* The approach within TimeSPOT was to use 3D
silicon (and Diamond) sensors to achieve fast |
timing

* Reducing inter-electrode distance
* Reducing charge collection time
* As well improving intrinsic time resolution
* Increasing radiation hardness

3D sensor
n+

p+
First TimeSPOT batch, produced by FBK

o)

-----

TCAD model of the selected geometry

* The final geometry selected for the fast
timing 3D sensor is the “parallel-trench”

* Already produced in two batches (2019 and

2021) by FBK —

A

55 um
SEM HV: 10.0 kV WD: 11.59 mm L[| | 1 | | | vEcas TESCA
View field: 176 ym Det: SE 50 pm
Angelo Loi 55 Hm For more A. Loi https://iris.unica.it/handle/11584/284136 SEM MAG: 1.57 kx | Date(m/d/y): 10/29/19 FBK Micro-nano Facili
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TimeSPOT TCT setup

Measurements

e Sensor has been characterised
* Test beams (10/2019, 10/2021 and 5/2022) -
* Intrinsic time resolution
* Performance by tilting the device
* Sensor Efficiency
* Performance after radiation
* € Own constructed TCT setup in Cagliari

* Customised fast readout has been developed in
order to fully explore sensor performance {,

Single pixel test device

TimeSPOT fast-electronics

For more G.M. Cossu https://arxiv.org/pdf/2209.11147.pdf

Angelo Loi

Test beam setup for intrinsic time resolution characterisation

A

Sensor2
(DUT)

7> sensor 1
on piezo
(trigger)
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Results (1)

* Intrinsic time Resolution before
and after radiation damage above

10" n_eq

After rad damage

No rad damage
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With a slightly larger bias voltage (w.r.t. non-irradiated pixel working point )
the signal amplitude of irradiated sensors is recovered!
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https://indico.cern.ch/event/1120714/contributions/4867208/attachments/2472539/4242526/Andrea Lampis_iworid2022.pdf

https://indico.cern.ch/event/1127562/contributions/4954529/attachments/2511647/4317271/TimeSPOT _TWEPP2022 Final.pdf

0

IFD 2022 Rapid fire talk


https://indico.cern.ch/event/1120714/contributions/4867208/attachments/2472539/4242526/Andrea_Lampis_iworid2022.pdf
https://indico.cern.ch/event/1127562/contributions/4954529/attachments/2511647/4317271/TimeSPOT_TWEPP2022_Final.pdf

Res u Its ( 2 ) a n d O u t I OO k Incident beam angle 9° Incident beam angle go°

b E’ 71 ndf 181.6 /142 <>l<’ 4 148.5/ 143
, , o g mem T
* Sensor behaviour has been studied also by tilting G owsomme | 7 Lo oml
It ol SN
° o ° ° F ‘ t . 3‘023; 6.199 150 n ;ons1 - 4,417; .0.337
* ToA distribution at 20° becomes more gaussian mf :
* The inefficiency (at normal incidence) due to the dead- i
area of the trenches is fully recovered by tilting the o2 0
sensors around the trench axis 2 &) L N
. . 20 R Jeopoqeeg e U s heanllsan 0 P o N NN TR o - S aadlln - ool
* It also works for irradiated sensors o e s e | ke ASASS S AT T AR e

e Outlook:

e 32x32 pixel matrix has
g been bump-bonded on
a0l ; the TimeSPOT-1 ASIC

: and currently tested.
*t @130V Ve, Future 4D tracking
80:_ —e— Not irradiated triple strip detector and its
! il components are under
o P R SR S test and caracterisation
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Tilt-angle [deg] (more abou.t it on
Lorenzo’s slides)
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The TimeSPOT1 ASIC
a 28 nm CMOS timing front-end ASIC

-

I N 400 LI N
shalatala? i

TimeSPOT1 Hybrid

Lorenzo Piccolo - INFN Torino

INFN workshop on Future Detector, IFD2022 G’

17 October 2022
Lorenzo Piccolo (INFN TO) TimeSPOT1 ASIC IFD2022 1/4



The ASIC

sensor pitch 55um

electronics pitch 50um

@ 1024 channels organized in a 32 x 32
matrix of 55 pm x 55 pm pixels
(2.6 mm x 2.3mm)

@ electronics pitch reduced in the
horizontal direction (50 pm) —
insensitive area reduction

@ Local timing measurement — 3 MHz
peak hit rate per channel,
200 kHz average.

@ Power consumption under
1.5W/cm? INEN

Lorenzo Piccolo (INFN TO) TimeSPOT1 ASIC IFD2022 2/4




Timing Performance
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Lorenzo Piccolo (INFN TO)

[ps]
[ps]

u=42.6 [ps]
0=18.2 [ps]

50 60 70
ora [ps]

80 90 100

TimeSPOT1 ASIC

pixel architecture

Timing performance
(electrical tests):

o CSA — < 20ps

@ Analog FE — ~ 50ps
(Discriminator Issue)

e TDC — ~ 23ps
INEN

IFD2022 3/4



Future Prospects

TimeSPOT
X
%0g, Hybri 20g,

Figure: Hybrid test: off center 905 source

@ Hybrid tests: laser, radiation sources, test
beam.

@ New Version — IGNITE:

777777 e Scheme improvement and fixes —

20 ps resolution

ffffff e x16 scale-up

(~ 7mm x 7mm) INFN
TmoSPOT GNITE o 3D integration (TSV) e

B2x32

T
|
1
i
|
f-—=--T-—=---1-----q------
|
N
§
2
n
@
1
S S SUS PSR

Lorenzo Piccolo (INFN TO) TimeSPOT1 ASIC IFD2022 4/4



Requirements for Si-microstrip (LGAD) for next-
generation space detectors

Matteo Duranti

Istituto Nazionale Fisica Nucleare — Sez. di Perugia

PERUGIA



INFN Timing in an astro-particle tracker

ERUGIA (see M. Duranti, V. Vagelli et al., Advantages and requirements in time resolving tracking for Astroparticle
experiments in space, Instruments 2021, 5(2), 20; https://doi.org/10.3390/instruments5020020)

Including the timing into the Tracker of an astro-particle detector permits to:

» substitute (or provide full redundancy to) any other ToF detector (i.e. planes of
scintillators) in measuring B = arrival direction (downward vs upward), isotopic
composition for nuclear species (combined with E or p measurement), ...;

Tracker Calorimeter

* help to mitigate/solve different limitations in
current operating experiments such as:

- identification of the hits coming from back-
scattering from the calorimeter. Example:
identify photons without vetoing when large
back-scattering (DAMPE: photons lost due to
back-scattering 30%@100GeV, 50%@1TeV);

- e/p identification. The presence of a low energy ST a5
(i.e. B<1) back-scattered particles (i.e. hadrons)

First hit Second hit
from a shower identifies the CR as hadron;

- solve the "ghost" problem, typical of a oSS
microstrip silicon sensor, from back-scattering, S

g . . R,
pile-up particles, etc...; by Ghost Iyt \ Ghost hit


https://doi.org/10.3390/instruments5020020

INFN Back-scattering

e | 1TeV protons
3107k et
"E i = clectrons . .
W00 g " positrons Hits in the tracker (Egep >10 keV vs At
. — reone between the ith hit and the 15t hit (i.e. the
o CR passing in the first layer of the tracker)
10°
At=5*65ps=5*c*2cm
102 primary MC hits
Gl
. all MC hits
10 i
measured hits
108 measurements

3.5 4

10g10((At+1)/ns) assuming 100 ps resolution

—

10°
particles produced

from the 10*
interaction of the

CR with the siIicoﬁ03
detectors
Hits frqm back- tracker layers 0 o5 1 15
scattering At (ns)

back-scattering

0O(100ps) timing resolution enables to separate back-scattering from primary hits in the
tracker = improved efficiency in track reconstruction




INFN e/p identification

Tracker Calorimeter the electromagnetic shower is

composed only by "ultra-relativistic"
particles

- the time arrival in the tracker is (at
most):

~2d/c

Tracker Calorimeter

S
v

the hadronic shower could be
composed by "slow" particles
= the time arrival in the tracker
could be delayed

16/10/22 Matteo Duranti 3



INFN LGAD detectors

PERUGIA

Requirements:
*  measure the coordinate with < 10 um accuracy
. measure the time with < 100 ps accuracy

*  keep the linearity with the Z (i.e. energy deposit), up to
Z~=30 and more

*  possibly measure the Zwith < 0.3 c.u. accuracy

to PETIROC

* consume < 20 W/m? for the coordinate measurement S .
. consume < 20 W/m?2 for the time measurement ) e |N FN
* very moderate radiation hardness (™~ krads) required 5 e

Space LGAD for Astroparticle - SLA

How to read-out these sensors with a
very low power budget available?

-

e produce a custom ASIC (optimal
solution)
* use a COTS ASIC (i.e. PETIROC-2A)

— developed per other sensors (SiPM)
and "see what happens"

A demonstrator, capable also of some physics measurements, can be done in a 3U or 6U CubeSat:
- the idea has been proposed in an Italian Space Agency (ASI) "topical board"

- the idea was included in a Italian Research Ministry call for fundings (PRIN, "SLA")
- the detector (launch included!) is doable with a ~ 1M€ budget envelope



Future HEP links CNFR

Istituto Nazionale di Fisica Nucleare

Photonics Integrated Circuits (PIC) with
wavelenght division multiplexing (WDM)

Total 100 G = 4x 25G lanes

Radiation hard

Needs Electronics Integrated Circuits (EIC) |£ 4
- Front-End .
- Serialisers 4024
- Drivers ARm— /
- PLL 7/ 7)i)7/7/  |FALAPHEL INFN Call (2021-2023)

INFN: Padova, Pavia, Pisa
Universities: Bergamo, Milan,
Padova, Pisa, Scuola Superiore S.
Anna (Pisa)

Fabrizio.Palla@pi.infn.it

P.l. Fabrizio Palla




PIC Technology: iSipp50G by IMEC INFN

Istituto Nazionale di Fisica Nucleare

Ring Modulator — RM7 S T

* Ring modulators (RMs): light intensity modulation is achieved
via resonance shifts produced with a PN phase shifter.

RM- MZM
4WDM MZM7 MZM6 MZM5 MZM4 __(me)

f SEEREEE ]
RM4 H- 0§
it

S

(imec) RM5 i

* Testing conditions: A = 1556.16 nm, Vbias = 1.7 V, Vpp ~ 5 V, RM7 |

Optical insertion loss [dB]
o 0 :
o v

T=213°C,P, =13 dBm, OSNR,, ., =28.5dB Wl ] RMS8 |
D= LS g OO RM9 1
15554 15556 15558 1556 15562 15564 15566 RM6 |
A Optical wavelength [nm] ) !
i PD |
20 '2 ¥ Tee T e .' 4] T £ T Y (meC) '- v
h o 3 " A\ ,‘ . Photo-receiver FMZM1 j FMzMo

» non-linearities |
M -4 I : . g $ : 2 . T
@_5.-I5Gb/s b S .

0o
L)

| FMzM2

me ] RM3
| RM2
== RM1

FWHM ~ 790 pm .61 * 20 Gbls
25 Gb/s

Quality factor ~ ~ 2000 3;‘0;*: 8 30 Gbls

I

Modulation depth ~15dB 100 ':g " . 35 Gb/s z 3 Y (imec)
Modulation efficiency ~ 25 pm/V ol mew oy ge g _20' = A-IIS‘ == .-IlOA e _15 : = B RMO (imec)
RX optical power [dBm] MZM0 MZM1 MZM2 MZM3

5 mm x5 mm chip

Fabrizio.Palla@pi.infn.it



Electronics Integrated Circuits (28 nm TSMC) INEN

Istituto Nazionale di Fisica Nucleare

 4x8 channel matrix
~ Flash ADC (Pv)

THTITIRBELT 1T

—re————

LT

| 25 Gb/s driver (Pi) N

Fabrizio.Palla@pi.infn.it



Integ_ration PIC + EIC INFN

e B . &/,72% Istituto Nazionale di Fisica Nucl
O“c\ ‘/ : /&;/‘L}/r stituto Nazionaie ai |s.|ca ucleare .
— G « Future: study PCB flip chip
PIC

* Wire bond
integration at
Camgraphic (Pisa)

Fabrizio.Palla@pi.infn.it

\, fiber array




Organic thin films as flexible, large area
X-ray and proton detectors: why?

v" flexible and light-weight materials CALL INEN-CSN5 «FIRE
v solubility and tunability=> INKS -Fle.xil?le ionizing
radiation detectors»
v" low cost printing techniques 2019-2022

v" large area applications -scalability
Partners: INFN-BO, INFN-

RM3, INFN-NA, LNL, TIFPA

v Biocompatibility

/" Limited absorption - Radiation hardness

i ] ] =) Photoconductive GAIN!
v" Human tissue-equivalent materials

N PET substrate

~. Gold electrodes

@ Organic Semiconductor

Beatrice Fraboni



Direct X-ray detection with fully organic
devices

T Linear response, RT
7x10°,
{" 40keV
6x10°
< 5x10°A
& 4x10°
3 3x10°-
§ 2x1o*3_- (S@e g.szisv“y: 7x108 uC/Gy cm?)
o . >> than state-of-art large area
1x10 ] detectors (polyCZT or a-Se)
1T mm 0 —
2 4 6 8 10
X-ray photocurrent . X-Rays X-Rays Dose Rate (mGy/s)

Synchrotron X-ray beam
Energy 17 keV
Dose rate 19 mGy/s

Photocurrent (nA)

| Al =3 nA (max 30nA)
24

| bias voltage 0.2 V
14

0 60 120 180 240 300 360
Time (s)

TIPS Pentacene

L. Basirico et al., Nature Commun. 7, (2016)
|.Temino et al. Nature Commun. 11, (2020)

Beatrice Fraboni



4x10°-

3x10° 1

2x10°

1%x10°

Proton induced Current (A) <

Direct Proton detection with fully

organic devices

5x10™

4x10°
~ 3x10°4
2x10°-

1x10°

Photocharges (C

0

o W/L=1500_sample A
= W/L=1500_sample B
o W/L=6850_sample C

PROTON PULSE ON

VN N

bias <1V

200 00 400

time(s)

w

|. Fratelli et al., Science Advances 3, (2021).

Two different
1) the real-time response, proportighal

e W/L=6850_sample D
4 6 B 10 12
Total Dose JGy)

ntributions :

Photocharges (C)

3x10°

2x10°

1x10°° 1

Integrated signal stable ) -
1 upto24h o’
d””
t‘,
4
.

5MeV @LABEC

to the dose Al (pink shadow)

plastic substrate.

2) Integration-mode response :l;
(green shadow): baseline shift due to
the fixed charges trapped in the

1x10" 2x10" 3x10"

egrated FLUENCE (H'/cm®)

O+

Beatrice Fraboni



Indirect Proton detection with fully
organic devices

quntlllatm

Pa ssivation layer
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5MeV @ LABEC

S.Calvi et al., Nature Flexible Electronics in press (2022).

Beatrice Fraboni



Falaphel>

Table 1: Technology benchmarks and envisioned performance improvement with FALAPHEL

1. Space Resolution o, = 10 um (= pixel pitch ~ 40-60 pm)

et

Time Resolution g; < 50 ps on the full chain (g, = o,,,,,,, ® G P orpc)

3. Radiation hardness to high fluences (for sensors) and high doses (for electronics).
Fluences @ = 10" =~ 107 1 MeV n./cm* and Doses > 1 = 2 Grad
4. A detection efficiency of € > 99% per layer is tipically required (high fill factor)

v

The material budget must be kept below 1 = 0.5 % radiation length per layer

Very challenging front-end electronics must be developed:
high resolution @ 10s pW/pixel, huge data bandwidth = 100 Gbps/cm?2.
Today a complete solution for that is FAR from being available.
Developments ongoing

State of the art - VCSEL+

This project (FALAPHEL)

Data rate

10 Gb/s

2100 Gb/s

Radiation TID

200 Mrad (2 MGy)

21 Grad (10 MGy)

Total Fluence

10"n/cm?

>5 x 10"®n/cm?

A challenging
Back-end....

> Aggregated 100 Gb/s links using wavelength division multiplexing (4
wavelength on a single optical fibre) and Integrated Front-End electronics



Istituto Nazionale di Fisica Nucleare

@ Key: Silicon Photonics Fa Ia ph e|>

(4 wavelengths) (single mode optical fibre)

.0 5
' . - ; >
DC light power E ' Tx optical output

: Side view

i 2.5 mm

Electronic! PIC

; PLL die :

i ~1 mm

é fiber array
[ Sensor J
Schematics of the PIC and EIC assembly (FALAPHEL demonstrator). Interposer-free flip-chip integration

Ring resonators (1) with different and tunable resonator wavelengths are using a high-speed PCB
located along horizontally drawn bus waveguides (2) which are connected
to optical glass fibers by efficient and robust focusing grating.




Results & future  cuosmmmemanse  |-alaphel D

Irradiated @ 2.5 10" ngg/cm?, a4y = 0°

% Entries 5378 Falaph e|>
- x*/ ndf 158.2/199 ; g Silicon Photonics die
"o Prob 0.9849 | ;]m
B Norm 3.711+ 0.058 T '
120 ", 8.51+0.00
- 0y 0.009233 + 0.000332 ¢ iy . ,
100— H, M, 0.007403 +0.001176 e =l - ‘ - = - o
o,/ 0, 1.982 + 0.094 ; '
80— f, 0.6768 + 0.0452 Electronic.
B const 1.35+0.14 die
N 14001 1=22.6283 [ps]
60— —_— 0=5.4690 [ps]
- Eff = 10. 3 ps 1000
40—
: @ 150V ooy |
g e 6001 Sensor ]
L o 4001
gLy l Ll o=
e L R T T T o oy Tt T T o) o o o Bk Kt 2004
0% 56 85 AM 28-nm

0_

0 10 20 30 40 50
Jitter[ps]

Associative Memories

Scaltech28

28nm rad hardness

Distribution of the TA standard
deviation across 1024 channels and 7
phases. Each point is computed from

100 repeated measurements.

TIME and SPace real-time Operating Tracker




Electronics and Technologies for fast (high density) timing 4

§
(in the «hybrid approach») IG N ITE INFN

Vision/concept of a cut of INFN Ground-up iNITiative for | Electronics : evelopments

the IGNITE system module Tracks An INFN-wide initiative
(not to scale) ' 14 sites, > 70 people
III,I Sensor Bump bonding or equivalent

RDL (Ri-Distribution Layer)

(Thinned)
CMOS 28-nm
ASIC
v/
o / Channel cooling system
Auxiliary components and / TSV H 9 sy
optical read-out (PIC) ¥ interposer &

cooling plate

Target deliverable of the IGNITE project:

* A complete module (sensor, read-out ASIC, vertical IC, photonic circuit for data links, cooling system)
* The module development as a route to optimize material budget issues and High Density
Interconnectivity between the device stages

* The whole thing below 0.8 (LHCb) = 0.5 (NA62) % X,
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