Rn requirements for outer veto AAr

Shawn Westerdale 25 May, 2022 Materials Call

The outer veto as a neutron source

- The (a,n) yield of ^{nat}Ar for...
 - ²²⁰Rn decay chain: 2.5×10⁻⁵ n/s/Bq
 - ²²²Rn decay chain: 1.4×10⁻⁵ n/s/Bq
- For ~700 tonnes of AAr, 1 Bq/kg \rightarrow 700 kBq
 - From ²²⁰Rn: 9.8 n/s
 - From ²²²Rn: 17.5 n/s
- P(TPC background | AAr neutron) ~ 2.6×10-8
 - g4ds simulations from Paolo
- Therefore, the background rate from (α ,n) backgrounds from Rn in AAr
 - From ²²⁰Rn: 80 evts/(10 yrs)/Bq
 - From ²²²Rn: 143 evts/(10 yrs)/Bq

Requirements on AAr purity

- Total neutron background from all components is 0.09928 evts/(10 yr)
 - Most subdominant sources contribute $10^{-3}-10^{-4}$ evts/(10 yr) reasonable to aim for this range, as well
 - From Vicente's spreadsheet
- Therefore, for AAr neutrons to be negligible, we need
 - A_{222Rn} : <1.2 $\mu Bq/kg$ or <12.4 $\mu Bq/kg$
 - A_{220Rn} : <0.7 $\mu Bq/kg$ or <7.0 $\mu Bq/kg$
- For reference:
 - DEAP had... $^{222}Rn:$ 0.15 $\mu Bq/kg$, $^{220}Rn:$ 0.004 $\mu Bq/kg$
 - DS-50 had...²²²Rn: 2.12 μ Bq/kg
- DEAP took **very** extensive measures to minimize Rn levels (as did DS-50), though this would indicate that the target Rn levels are likely achievable, with some wiggle room to be higher than DEAP, given that we are conscious of Rn contamination

How well do we know the ⁴⁰Ar(α ,n) yield?

- There currently exists one measurement of the (a,n) cross section on $^{40}\text{Ar},$ at 7.4 MeV
 - Author measures 33 mb
 - No uncertainty analysis is presented beyond a guess that the measurement may be in error by "as much as a factor of 2"
- Clearly TALYS and the single measurement do not agree, so the (α,n) yield must be very uncertain
 - Until better measurements can be made, it is prudent for us to err on the side of caution and assume the highest cross section

Plot by Holger Kluck using TASMAS to vary TALYS "default" uncertainties, defined so that on average, bands cover data/model ₄ uncertainties over all reactions

What about (α, n) in other volumes?

- For ⁴⁰Ar(α,n)⁴³Ca w/ 5.5 MeV α (lowest in ²²²Rn chain) minimum
 ⁴³Ca recoil energy is 202 keV, just above WIMP ROI
 - If α attenuates before capture, its energy is easier to see than ${}^{\scriptscriptstyle 43}\text{Ca}$ recoil
 - Additional signal from recoiling nucleus: e.g. ²¹⁸Po $\rightarrow \alpha$ + ²¹⁴Pb (103 keV)
 - 214 Pb recoil quenched more heavily than 40 Ar, 103 keV_{Pb}~30 keV_{Ar} (or 5 keV_{ee})
 - J. Xu et al. "First measurement of surface nuclear recoil background for argon dark matter searches", PRD 96, 6 (2017): 061101
- It will be harder to see these NR signals in the neutron veto
 - For 8 MeV α 's, TALYS predicts that 96% of decays will go to an excited state of ⁴³Ca, and so the de-excitation γ 's would give a veto signal
 - May help in inner veto, but hard to say...warrants further investigation

END