

con tecnologie criogeniche in CUORE Alice Campani, Università di Genova - INFN Sezione di Genova Dipartimento di fisica, Università di Genova, 19/05/2022

Indice della presentazione

- La fisica del neutrino e la ricerca del doppio decadimento senza neutrini $(0\nu\beta\beta)$ storia, connessioni e implicazioni
- La ricerca del $0\nu\beta\beta$ sfide e prospettive degli esperimenti attuali
- CUORE per la ricerca del $0\nu\beta\beta$ sfida tecnologica, stato attuale e risultati
- Il futuro della tecnologia di CUORE: CUPID cristalli scintillanti per abbattere il fondo

La fisica del neutrino e il doppio decadimento beta senza neutrini

Il doppio decadimento beta: origine dell'idea del neutrino

- 1914: Mentre il decadimento $\alpha \in \gamma$ producono uno spettro discreto, •
 - J. Chadwick scopre che lo spettro degli elettroni nel decadimento β è continuo Di questo fatto vengono date inizialmente due spiegazioni diverse:
 - L. Meitner sostiene si tratti di un effetto di processi secondari
 - C. D. Ellis ipotizza che sia lo spettro degli elettroni ad essere continuo Una misura calorimetrica (210Bi) chiarisce che è vera la 2° ipotesi -
- 1930: W. Pauli nel suo tentativo di salvare la conservazione • dell'energia postula l'esistenza di una nuova particella neutra di spin 1/2 che E. Fermi chiamerà in seguito "neutrino" e verrà osservata per la prima volta soltanto 20 anni dopo nella cattura elettronica dell' ³⁷Ar (1952) $e^- + {}^{37} Ar \rightarrow {}^{37} Cl + \nu_e$

Il doppio decadimento beta: origine dell'idea del neutrino

1934: Dopo la scoperta del neutrone (1932), E. Fermi formula una teoria convincente del

•

1935: In questo contesto, M. Goeppert-Mayer - da un'idea di Wigner - mette in evidenza la • possibilità che un nucleo pari-pari (parabola inferiore) per il quale il decadimento β è proibito transisca ($\beta\beta$) a un nucleo stabile con l'emissione simultanea di due elettroni

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e \quad (2\nu\beta\beta)$ sulla base della teoria di Fermi include due neutrini nello stato finale e trova che la vita media supera $T_{1/2} > 10^{17}$ yr per processi di questo tipo

decadimento β e del μ e stimola la ricerca sperimentale del neutrino - il neutrino elettronico verrà scoperto nel 1956 (Cowan e Reines) nel decadimento β inverso in una misura al reattore

> **Even Mass** Number N,Z odd

Il doppio decadimento beta: la teoria di Majorana e Racah

1937: E. Majorana formula una teoria alternativa alla teoria dell'elettrone e del positrone di P. Dirac per la quale le **particelle neutre** tra cui neutroni e ipotetici neutrini possono coincidere con le proprie anti-particelle

•

1937: G. Racah (da discussioni con W. Pauli) • mette in evidenza tre elementi: 1) la simmetria tra particelle e antiparticelle implica una modifica nella teoria di Fermi 2) $\nu \equiv \bar{\nu} \Rightarrow$ vale la teoria di Majorana

TEORIA SIMMETRICA DELL'ELETTRONE E DEL POSITRONE

Nota di ETTORE MAJORANA

Sunto. - Si dimostra la possibilità di pervenire a una piena simmetrizzazione formale della teoria quantistica dell'elettrone e del positrone facendo uso di un nuovo processo di quantizzazione. Il significato delle equazioni di DIRAC ne risulta alquanto modificato e non vi è più luogo a parlare di stati di energia negativa; nè a presumere per ogni altro tipo di particelle, particolarmente neutre, l'esistenza di «antiparticelle» corrispondenti ai «vuoti» di energia negativa.

3) l'identificazione particella-antiparticella non può valere per i neutroni per due ragioni il decadimento β e il momento magnetico $\vec{\mu}_n$ distinguono neutrone e anti-neutrone

Il doppio decadimento beta senza neutrini e l'idea di Majorana

1939: W. H. Furry combina la teoria di E. Majorana con la proposta del decadimento $\beta\beta$ di M. Goeppert-Mayer e ipotizza il **doppio decadimento beta senza neutrini** $(A, Z) \rightarrow (A, Z \pm 2) + 2e^{\mp} (0\nu\beta\beta)$

•

- possibile con l'emissione e il ri-assorbimento di neutrini virtuali di Majorana in due stadi: i) il nucleo (A, Z) emette un elettrone e transisce a uno stato intermedio virtuale con un $\bar{\nu}$ ii) l'anti-neutrino virtuale viene assorbito dal nucleo intermedio e produce il 2° elettrone A seconda del tipo di interazione, secondo Furry si puó avere anche $T_{1/2} \simeq 10^{15}$ yr La sua proposta motiva le prime ricerche sperimentali con esperimenti geochimici
- Dal 1940 inizia la ricerca sperimentale del decadimento $\beta\beta$ con le due possibilità: canale 2ν con vite medie di O(10²¹-10²²) yr e canale 0ν con vite medie di O(10¹⁵-10¹⁶) yr

La ricerca sperimentale del doppio decadimento beta: primi esperimenti, "medioevo" e "rinascimento"

Davis (1955) non osserva il processo di Racah ${}^{37}\mathrm{Cl}\left(\bar{\nu}_e, e^-\right){}^{37}$ e dalla natura V-A delle interazioni deboli il $0\nu\beta\beta$ è molto più raro

"Rinascimento"

Prima osservazione diretta (1987) del 2
uetaetaeta nel ⁸²Se con una TPC, nel 1991 osservato per la prima volta il decadimento su uno stato eccitato nel ¹⁰⁰Mo. L'evidenza delle oscillazioni di sapore (1998) dei neutrini motiva

l'interesse per il $0\nu\beta\beta$

"Medioevo"

Il neutrino deve avere una massa per il 0
uetaeta, sviluppo teorico notevole e nuove tecniche sperimentali: Ge(Li), rivelatori HPGe e TPC

8

Il doppio decadimento beta senza neutrini

$(A,Z) \rightarrow (A,Z \pm 2) + 2e^{\mp} (0\nu\beta\beta)$

Processo che viola la conservazione del numero leptonico di due unità $\Delta L = 2$: la sua osservazione implica evidenza di fisica <u>oltre</u> il Modello Standard della fisica delle particelle

Il meccanismo più semplice prevede lo scambio di neutrini leggeri dotati di massa di Majorana

È un processo di creazione di materia che potrebbe avere implicazioni notevoli per le teorie che cercano di spiegare l'asimmetria tra materia e anti-materia dell'Universo

Ad oggi nessuna evidenza di 0
uetaetaeta, limiti su $T_{1/2}\sim 10^{24}-10^{26}$ yr

Lo studio del $0\nu\beta\beta$ per la fisica del neutrino e interplay con altre misure

- Sappiamo che esistono almeno 3 famiglie di neutrini e che ulletdevono avere una massa dall'evidenza di oscillazioni di sapore
- Non sappiamo qual è la natura della massa dei neutrini, qual è ٠ la scala di masse dei neutrini e neppure il loro ordinamento
- Limiti stringenti da misure cosmologiche (CMB) sulla somma • delle masse $\Sigma \equiv m_1 + m_2 + m_3$: $\Sigma \leq 0.1 \text{ eV}$
- Informazioni utili dallo studio dell'end-point dello spettro ٠ del decadimento β singolo: limite su m_{β} < 0.8 eV (KATRIN)
- Debole preferenza per l'ordinamento normale dalle oscillazioni \bullet

normal hierarchy

inverted hierarchy

10

Esperimenti per la ricerca del doppio decadimento beta senza neutrini

11

La ricerca del doppio decadimento beta senza neutrini: il segnale

Numero di eventi

- La segnatura sperimentale del $0\nu\beta\beta$ è un picco monocromatico all'energia • $Q_{\beta\beta} = m_{\text{nucleo},i} - m_{\text{nucleo},f} - 2m_e$ nell'energia totale della coppia di elettroni emessi
- Alcuni esperimenti hanno l'obiettivo di ricostruire completamente la topologia degli eventi • identificando la traccia dei singoli elettroni prodotti nel decadimento

La ricerca del doppio decadimento senza neutrini: dalla vita media alla stima del termine di massa del neutrino

Nell'ipotesi che il decadimento sia mediato dallo scambio di neutrini leggeri di Majorana

 $< m_{\beta\beta} >$ m_e^2 Probabilità della transizione Massa del neutrino (dipende dal nucleo) che regola il decadimento massa efficace di Majorana $|\langle m_{\beta\beta}\rangle| = \sum U_{ei}^2 m_i$ **K** Non è nota e dipende dal modello considerato: i=1.2.3differenze di un fattore $\sim 2/3$ U_{ei} dipende dagli angoli di mixing, da per un dato nucleo δ_{CP} e dalle fasi di Majorana

La ricerca del doppio decadimento senza neutrini: massa efficace di Majorana

Nell'ipotesi che il decadimento sia mediato dallo scambio di neutrini leggeri di Majorana

Spazio dei parametri disponibile per $m_{\beta\beta}$

- angoli di mixing fissati ai dati delle oscillazioni
- fasi di Majorana libere

in funzione della massa del neutrino più leggero

Lobster plot Vissani, F. JHEP06(1999)022

La ricerca del doppio decadimento beta senza neutrini: sensibilità

Sensibilità sperimentale al decadimento $0\nu\beta\beta$

Scelta di una tecnica scalabile a masse elevate

Fondo minimo nella regione di interesse (ROI)

> Se il fondo è trascurabile (condizione di <u>zero fondo)</u>

> > $S^{0\nu} \propto M \cdot T$

dipende linearmente da massa e live-time

 $S^{0\nu} \propto$

Tempi di acquisizione di anni (per il futuro decenni) rivelatori stabili

Elevata risoluzione energetica

La ricerca del doppio decadimento beta senza neutrini: parametri critici

- Disponibilità in grandi quantità O(~tonnellate)
- <u>Compatibilità con una tecnica di rivelazione</u>
- Abbondanza isotopica

la necessità di arricchimento implica

- 1. valutazione dei costi
- 2. sviluppo tecnologico

La scelta dell'isotopo

<u>Q-valore</u>

- 1. la radioattività naturale diminuisce con l'energia
- 2. lo spazio delle fasi $G_{0\nu}(Q,Z)$ scala come $Q^5_{\beta\beta}$
 - il ¹⁵⁰Nd è il favorito, il "peggiore" è il ⁷⁶Ge
- 3. la frazione di eventi di $2\nu\beta\beta$ (fondo) è ~ $1/Q_{\beta\beta}^5$

La ricerca del doppio decadimento beta senza neutrini: parametri critici

•

- lacksquare

Fondo e risoluzione

La ricerca del doppio decadimento beta senza neutrini: le principali tecniche sperimentali

Bassa risoluzione X

<u>GERDA, Majorana, LEGEND</u>

- purezza (⁷⁶Ge, Q=2039 keV)
- Risoluzione elevata 0.13% a 2 MeV (GERDA)
- Costi e scalabilità 🗡

Diodi al germanio ad alta

 $T_{1/2}^{0\nu} > 1.8 \cdot 10^{26}$ yr (GERDA)

- <u>EXO-200, nEXO</u>
- TPC a xenon liquido
- NEXT-100, NEXT-BOLD
 - TPC a xenon gassoso
- Ricostruzione topologica delle tracce 🗸
- Bassa risoluzione X
- Efficienza bassa (NEXT) 🗡

L'esperimento CUORE per la ricerca del $0\nu\beta\beta$

L'esperimento CUORE

Cryogenic Underground Observatory for Rare Events

- Objettivo scientifico principale: la ricerca del $0\nu\beta\beta$ del ¹³⁰Te •
- Matrice di calorimetri criogenici: 988 cristalli di ^(nat)TeO₂ • 19 torri per 742 kg di TeO₂ e circa 206 kg di¹³⁰Te
- Underground nella sala A dei • Laboratori Nazionali del Gran Sasso

Risoluzione a $Q_{BB} \simeq 2528 \text{ keV}$ 7.8(5) keV FWHM Fondo nella regione di interesse 1.49(4)·10⁻² conteggi/keV/kg/yr

Adv. in High En. Phys. 2015, 879871 Eur. Phys. J. C77 (2017), 532

Sensibilità target (livetime di 5 anni)

 $T_{0\nu\beta\beta}^{1/2} = 9 \cdot 10^{25} \text{ yr}$

La collaborazione CUORE

27 Istituzioni di 4 Paesi: Cina, Francia, Italia e Stati Uniti - https://cuore.lngs.infn.it

0	1
2	

La collaborazione CUORE

27 Istituzioni di 4 Paesi: Cina, Francia, Italia e Stati Uniti - https://cuore.lngs.infn.it

La scelta del tellurio

Abbondanza isotopica (\sim 34.17%) tale da usare il tellurio naturale

Vita media per il $2\nu\beta\beta$ relativamente lunga ($T_{1/2}^{2\nu} \simeq 7.7 \cdot 10^{20}$ yr)

Termine cinematico grande poiché $G(0\nu) \propto Q_{\beta\beta}^5$ e Q = 2528 keV

 $Q_{\beta\beta}$ sopra la radioattività β/γ (solo la riga a 2615 keV del ²⁰⁸TI)

La tecnica bolometrica: calorimetri criogenici

<u>Bolometro</u>: l'energia rilasciata in processi β, γ, α viene misurata con le eccitazioni termiche (i fononi)

Il criostato di CUORE

Criostato a diluizione a diversi stadi

- Fast cooling system per raggiungere \sim 50 K
- 5 Pulse Tubes per scendere a 4 K -
- Unità a diluizione (³He-⁴He) mantiene le torri a 10 mK •

<u>Il criostato più grande e più potente in operazione oggi</u>: potenza di raffreddamento superiore a 3µW a 10 mK mantiene ~ 17 tonnellate di materiale sotto a 4 K!

Requisiti stringenti in termini di stabilità termica e meccanica e di radiopurezza dei materiali impiegati

> Il metro cubo piú freddo dell'Universo! Cryogenics 102 (2019) 9-21

Schermare il rivelatore dalla radioattività naturale e dai raggi cosmici

Schermatura naturale @ LNGS 3600 m w.e. di roccia Flusso dei raggi cosmici $\sim 10^{-6}$ volte il flusso in superficie

<u>Schermi esterni</u> per γ: strato di 25 cm di Pb per neutroni: strato di 20 cm polyethylene + pannelli H₃BO₃

Y-beam Steel rope Minus K Sand-filled coulmn Concrete wall Screwjacks Concrete beam

<u>Schermi interni</u> *In alto*: 30 cm di piombo moderno Ai lati e sotto: Piombo romano di 6 cm da una nave affondata $(^{210}Po<4 \text{ mBq/kg})$

La realizzazione di CUORE

La realizzazione di CUORE

Commissioning del rivelatore

- Rivelatore assemblato nel 2012 il primo raffreddamento a fine 2016 e la presa dati è iniziata nel 2017 •
- ۲

- Scansione delle temperature per cercare la condizione ottimale (ora @15 mK) ٠
- Diversi interventi sul sistema criogenico nel 2019, da allora l'esperimento è in fase di presa dati stabile ٠

Upgrade del sistema di calibrazione nel 2018: introdotto un setup meno invasivo rispetto al sistema criogenico

Stato attuale dell'esperimento

La presa dati procede stabile da marzo 2019

- Accumulata un'esposizione di oltre 1600 kg·yr: fisica (per la ricerca del $0\nu\beta\beta$) intervallati da • 15/17 dataset inclusi nell'analisi più recente periodi di calibrazione di 3/4 giorni
- Acquisizione in continua del segnale degli NTD Il rate medio di acquisizione è ~50 kg·yr/mese • con frequenza di campionamento 1 kHz Trigger ottimo applicato offline

Dati suddivisi in *dataset*: 40-60 giorni di dati di

L'analisi dei dati di CUORE

L'analisi dei dati di CUORE

Efficienza dei tagli di base: (96.4%) Trigger di segnale Energia ben ricostruita Esclusi effetti di per pile-up

Efficienza di anti-coincidenza: Efficienza del taglio di PSD: (99.3%)(96.4%)Probabilità di non escludere Frazione di eventi che passano il taglio di forma basato sulla segnali per coincidenze casuali (riga a 1461 keV del 40 K) Principal Component Analysis

Lo spettro di energia finale

Il fit nella regione di interesse: il decadimento 0 uetaetaeta del 130Te

L'esposizione di TeO₂ è **1038.4.** kg · yr <u>Nessuna evidenza di $0\nu\beta\beta$ </u> Dete di beet fit $\hat{\Gamma} = (0.0 \pm 1.4) = 10^{-26}$

Rate di best fit $\hat{\Gamma}_{0\nu} = (0.9 \pm 1.4) \cdot 10^{-26} \text{ yr}$ Limite $T_{0\nu\beta\beta}^{1/2} > 2.2 \cdot 10^{25} \text{ yr} (90 \% \text{ C}.\text{ I.})$

Nature 604, 53-58 (2022)

Article | Open Access | Published: 06 April 2022

Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE

The CUORE Collaboration

Nature604, 53–58 (2022)Cite this article8593Accesses90AltmetricMetrics

Abstract

The possibility that neutrinos may be their own antiparticles, unique among the known fundamental particles, arises from the symmetric theory of fermions proposed by Ettore Majorana in 1937¹. Given the profound consequences of such Majorana neutrinos, among which is a potential explanation for the matter-antimatter asymmetry of the universe via leptogenesis², the Majorana nature of neutrinos commands intense experimental scrutiny globally; one of the primary experimental probes is neutrinoless double beta $(0\nu\beta\beta)$ decay. Here we show results from the search for $0\nu\beta\beta$ decay of ¹³⁰Te, using the latest advanced cryogenic calorimeters with the CUORE experiment³. CUORE, operating just 10 millikelvin above absolute zero, has pushed the state of the art on three frontiers: the sheer mass held at such ultralow temperatures, operational longevity, and the low levels of ionizing radiation emanating from the cryogenic infrastructure. We find no evidence for $0\nu\beta\beta$ decay and set a lower bound of the process half-life as 2.2×10^{25} years at a 90 per cent credibility interval. We discuss potential applications of the advances made with CUORE to other fields such as direct dark matter, neutrino and nuclear physics searches and large-scale quantum computing, which can benefit from sustained operation of large payloads in a low-radioactivity, ultralowtemperature cryogenic environment.

Risultati dell'analisi del decadimento $0\nu\beta\beta$ del ¹³⁰Te

semplice in base ai valori degli elementi di matrice estraiamo un limite su $m_{\beta\beta} < 75 - 350 \text{ meV}$

Altre analisi recenti con i dati di CUORE

Modello termico della risposta dei rivelatori

arxiv:2205.04559 (Mandato a JAP)

E molto altro ancora!

Studio delle sorgenti di rumore ambientali e antropiche in CUORE, modello delle sorgenti di fondo per CUPID, analisi di bassa energia.

Altre analisi recenti con i dati di CUORE

Cattura elettronica con emissione di un positrone ($0\nu EC\beta^+$) del 120Te

Segnatura molto chiara grazie al positrone nello stato finale: γ da 511 keV back-to-back Cinque canali di decadimento in CUORE: due a singoli cristalli, tre con eventi su 2/3 cristalli

$Q_{\beta\beta} = 1714.8$ keV, abbondanza isotopica 0.09%

	Signal Peak	Multiplicity	Energy range [keV]			Containment efficienc
	Position [keV]		$\Delta \mathrm{E}_{\mathrm{0}}$	ΔE_1	ΔE_2	$\varepsilon_{ m mc}$ [%]
	1203.8	1	[1150, 1250]			12.8(5)
	1714.8	1	[1703, 1775]			13.1(5)
	(692.8, 511)	2	[650, 750]	[460, 560]		4.10(20)
1)	(1203.8, 511)	2	[1150, 1250]	[460, 560]		13.8(6)
)	(692.8, 511, 511)	3	[650, 750]	[460, 560]	[460, 560]	2.15(9)

Prova della efficacia della granularità del rivelatore CUORE per analisi di coincidenza

Analisi Bayesiana "ibrida": modello unbinned per (a) e (b), spettri binnati per le segnature (c)-(e)

Miglioramento di \sim 10 rispetto a CUORE-0 e Cuoricino

Altre analisi recenti con i dati di CUORE

Cattura elettronica con emissione di un positrone ($0\nu EC\beta^+$) del ¹²⁰Te

Conclusioni e prospettive

- tonnellata, aprendo la strada alla ricerca di eventi rari con calorimetri criogenici
- - Feedback importante per CUPID:
 - mantenimento e funzionamento del sistema criogenico,
 - modello accurato delle sorgenti di fondo
- Piano a lungo termine: la presa dati continuerá fino al raggiungimento di 3 tonne yr di • esposizione e quindi presumibilmente fino alla fine del 2024

CUORE ha dimostrato che la tecnica bolometrica è scalabile a masse dell'ordine della

Un vantaggio notevole della tecnica bolometrica è che è applicabile a isotopi diversi

Il futuro di CUORE

CUPID: Cuore Upgrade with Particle IDentification

- Objettivo scientifico principale: la ricerca del $0\nu\beta\beta$ del ¹⁰⁰Mo • $Q_{\beta\beta}$ ~3034 keV, fondo eta/γ ridotto ancora, spazio delle fasi migliore
- Stessa scala di massa di CUORE (presa dati stabile da 3 anni): • 1500 cristalli scintillanti di Li₂MoO₄ arricchiti >95% di ¹⁰⁰Mo (\sim 250 kg)
- Tecnica bolometrica con cristalli scintillanti rende possibile l'identificazione delle particelle dimostrata dagli esperimenti CUPID-0 (82Se)

Phys. Rev. Lett. 123, 032501 (2019)

CUPID-Mo (¹⁰⁰Mo)

- Sarà posizionato nel criostato di CUORE (alcuni upgrade previsti)
- Aggiunta di un veto esterno per μ

Target Fondo **10**-4 conteggi/keV/kg/yr Risoluzione (FWHM) 5 keV Sensitivity **10**²⁷ yr (in 10 anni) Gerarchia diretta $m_{\beta\beta} \sim 12$ -20 meV

Da CUORE a CUPID: bolometri scintillanti

- Rivelatore termico puro: non distingue le particelle interagenti
- Fondo principale: α da decadimenti superficiali sui cristalli o strutture vicine

La misura simultanea del segnale di calore e di luce (2°bolometro) permette di distinguere β e γ dalle α

PID (α) + ¹⁰⁰Mo (β , γ) fondo ridotto di ~1/150

- Matrice di 20 cristalli di Li₂MoO₄ arricchiti al Bolometri scintillanti di Zn^{enr}Se: m(⁸²Se)~5kg 97% di ¹⁰⁰Mo: 2.26 di ¹⁰⁰Mo
- Ai LNGS nel criostato di CUORE-0 •

Ai Laboratori sotterranei di Modane •

43

Prospettive future

Prospettive future

Gli esperimenti della prossima generazione hanno l'obiettivo di esplorare la zona della gerarchia diretta

Grazie a tutti per l'attenzione!

