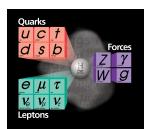
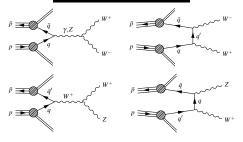
# Measurement of WW/WZ cross section in lepton-neutrino + jets final state at CDF

#### Viviana Cavaliere


University of Siena, INFN Pisa

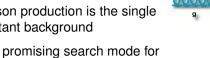

14/12/2010



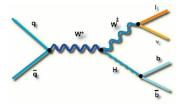
### Why studying Diboson?








- Measurements of electroweak vector boson production are an important test of the Standard Model.
- They are a reality check on path to finding mutilepton and semileptonic final states with very small σ × BR.
- s-channel probes triple gauge couplings (TGC)
  - Sensitive to new physics: ZZZ,  $ZZ\gamma$ ,  $Z\gamma\gamma$  absent in SM
- Cross sections can be enhanced by new physics(Higgs, SUSY, ...)

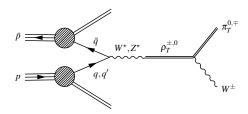

### Motivation: Higgs searches



- $\bullet$   $H \to WW$  is the dominant decay mode for a high mass Higgs ( $m_H > 135 \text{ GeV}/c^2$ )
  - Drives current exclusion limits
  - Direct diboson production is the single most important background



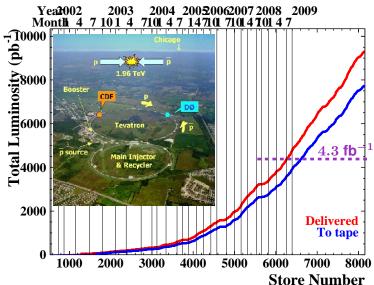
- $WH \rightarrow \ell \nu bb$  is a promising search mode for low mass Higgs ( $m_H < 135 \text{ GeV}/c^2$ )
  - Similar topology/final state to  $WW/WZ \rightarrow \ell \nu q \bar{q}$
  - Similar challenges → S/B WH 1.2% WW/WZ 2.9%




WW/WZ $\rightarrow \ell \nu q \bar{q}$  is a proving ground for Higgs search

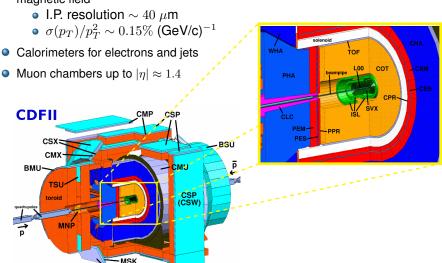
#### Motivation: physics beyond the SM




- Measurements involving associated production of W and jets gives us strong foundation also for searches for physics beyond the SM.
- SM Higgs, in fact, is not the only solution to the electroweak symmetry breaking
- One of the golden mode to test the MSSM Higgs sector is the channel W $\phi$  (neutral Higgs bosons) in which the  $\phi$  decays in  $b\bar{b}$ .
- Also Technicolor predicts that the same signature would be shared by processes like  $\rho_T \to W \pi_T$ . The signal process in the semileptonic final state is expected to show resonant peaks in both the dijet and W+2 jets mass spectra.



#### TeVatron performances



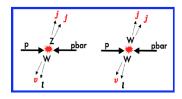

Collected data until Summer 2010 shutdown:

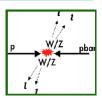


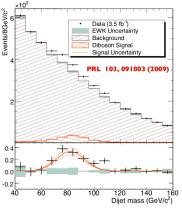
#### Important CDF II features

 Silicon detectors (L00+SVX+ISL) and central drift chamber (COT) in 1.4 T magnetic field




west


east

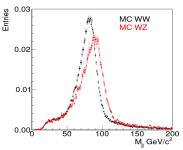

CMX (miniskirt)

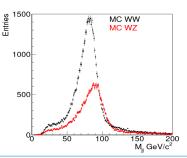
#### Diboson final states

- WW, WZ and ZZ production have already been studied in leptonic final states both at LEP and Tevatron
  - Clean Yields but low BR
- Semi-leptonic modes suffer from large background:
  - WW, WZ, ZZ observed in  $\mathcal{E}_T$  + jets mode at CDF in 2009
  - leptons + jets final state  $\rightarrow$  DØ showed evidence in 2008.



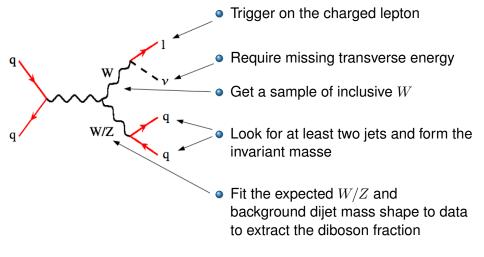






#### $WW/WZ \rightarrow \ell\nu$ + jets final state



- $lackbox{ }$  We treat events from WW and WZ as indistinguishable signals
- Largely due to insufficient dijet mass resolution: 10 GeV difference in mass
- Cascade decays of heavy quarks in  $Z \to b\bar{b}$  contain neutrinos, thus reducing reconstructed dijet mass in these events. Final mass difference:  $\sim$ 7 GeV
- Consider relative efficiency:


$$\begin{array}{c} \bullet \quad \sigma(WW(WZ) \rightarrow \ell\nu + jets) \times BR \\ \sim 3.5(0.5) \; \mathsf{pb} \end{array}$$





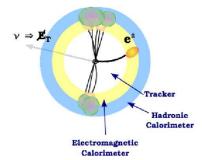
### Strategy





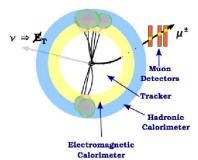
#### Backgrounds




- $W \to \ell \nu$  + jets  $(l = e, \mu, \tau)$ :
  - same signature as signal with a much higher cross section (2066 pb)
  - $\bullet~\sim$  80% of the sample
- $Z \rightarrow ll$  + jets ( $l = e, \mu, \tau$ ):
  - ullet where one of the two leptons escapes detection and produces  ${\cal E}_T$
  - cross section 187 pb
- $t\bar{t}$  + single top:
  - ullet final state similar to signal with at least one real W and two jets.
  - $\sigma(t\bar{t})$  = 7.5 pb and  $\sigma(\text{single top})$  = 2.9 pb (assuming a mass of 172.5 GeV/c<sup>2</sup>)
- QCD Multijet:
  - events without a real high pT lepton
  - e.g a three-jet event in which one jet passes all lepton cuts and, simultaneously, the energies are so badly measured that a large  $\mathcal{E}_T$  is reported.
  - probability for a jet to mimic a lepton is very small, but QCD processes have very large cross sections
  - estimated from data using orthogonal selection



• Start from a sample trigger with a high  $p_T$  electron or muon (CEM  $|\eta| < 1.0$ , CMUP  $|\eta| < 0.6$ , CMX  $0.6 < |\eta| < 1.0$ )




- Start from a sample trigger with a high  $p_T$  electron or muon (CEM  $|\eta| < 1.0$ , CMUP  $|\eta| < 0.6$ , CMX  $0.6 < |\eta| < 1.0$ )
- Electrons
  - Require calorimeter showers consistent with electromagnetic interactions
  - Calorimeter energy is clustered in cones of radius  $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.4$
  - Require that 90% of energy is deposited in the EM calorimeter

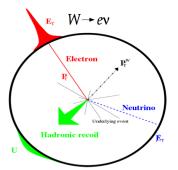




- Start from a sample trigger with a high  $p_T$  electron or muon (CEM  $|\eta| < 1.0$ , CMUP  $|\eta| < 0.6$ , CMX  $0.6 < |\eta| < 1.0$ )
- Electrons
  - Require calorimeter showers consistent with electromagnetic interactions
  - Calorimeter energy is clustered in cones of radius  $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.4$
  - Require that 90% of energy is deposited in the EM calorimeter
- Muons
  - Require high quality track
    - Good matching between the track and the hit in the muon chambers
  - Calorimeter deposit compatible with MIP






- Start from a sample trigger with a high  $p_T$  electron or muon (CEM  $|\eta| < 1.0$ , CMUP  $|\eta| < 0.6$ , CMX  $0.6 < |\eta| < 1.0$ )
- Electrons
  - Require calorimeter showers consistent with electromagnetic interactions
  - Calorimeter energy is clustered in cones of radius  $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.4$
  - 3 Require that 90% of energy is deposited in the EM calorimeter
- Muons
  - Require high quality track
  - Good matching between the track and the hit in the muon chambers
  - Calorimeter deposit compatible with MIP
- Selecting electrons and muon with  $E_T(p_T) > 20$  GeV/c² (GeV/c) and  $|\eta| < 1.2$ .
- Both are required to be isolated to reject leptons from semi-leptonic decays of heavy flavor hadrons and leptons faked by hadrons.



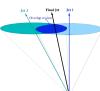
- Once we have a good lepton, we want events consistent with  $W \to \ell \nu$  decay
- Undetected neutrino manifests as an imbalance in transverse momentum: "missing" transverse energy

$$\overrightarrow{\mathscr{E}}_T = -\sum_i \overrightarrow{E}_T^i$$

- To reduce multijet backgrounds, we require  $\mathscr{L}_T > 25$  GeV and  $M_T^W > 30$  GeV.
- Veto events with two leptons whose invariant mass is in the Z window
- Veto on cosmic events and conversions.



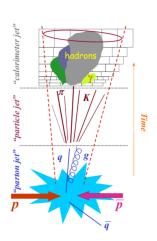
#### Jet reconstruction




- The algorithm used for the Jet Reconstruction is JETCLU:
  - $\bigcirc \hspace{0.5cm} \text{Finds the seed towers with } E_T > 1 GeV$
  - Looks for adjacent towers in a cone  $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$
  - The E<sub>T</sub> weighted centroid is then formed and if this equals the one of the previous iteration, the cone is considered stable.
  - If the shared energy between two clusters is more than 75% towers assigned to the closest cluster.

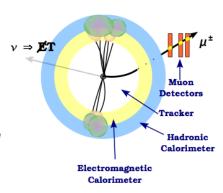









#### Jet reconstruction




- The algorithm used for the Jet Reconstruction is JETCLU:
  - lacktriangledown Finds the seed towers with  $E_T > 1 GeV$
  - Looks for adjacent towers in a cone  $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$
  - The E<sub>T</sub> weighted centroid is then formed and if this equals the one of the previous iteration, the cone is considered stable.
  - If the shared energy between two clusters is more than 75% towers assigned to the closest cluster.
- The four-momentum assigned to a jet suffers for both detector inaccuracies and reconstruction algorithm imperfections.
- Correct for the response inhomogeneity in  $\eta$ , contributions from multiple interactions, the non-linearity of the calorimeter response





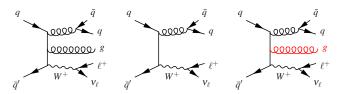
- Quark jets arising from W/Z→ qq̄ decays are very energetic and relatively central
- Cluster energy in cones of  $\Delta R <$  0.4
- Calorimeter signature must be inconsistent with electron signatures
- No veto on number of jets to increase acceptance.
- Select jet with  $E_T > 20$  GeV and  $|\eta| < 2.4$



### Modeling of background



- Most of the backgrounds modeled using Monte Carlo simulation


  - W+jets simulated using ALPGEN with the showering from PYTHIA
  - $\bigcirc$  Z+jets simulated using ALPGEN with the showering from PYTHIA
  - 9  $t\bar{t}$  production simulated using PYTHIA with a top mass of 172.5
  - Single top production simulated with MADEVENT + PYTHIA
  - QCD modeled using data.

| Process                          | $\sigma$ (pb)  |
|----------------------------------|----------------|
| WW/WZ inclusive                  | $15.9 \pm 0.9$ |
| $Z  ightarrow e, \mu, 	au$ +jets | $787 \pm 85$   |
| $tar{t}$                         | $7.5\pm0.83$   |
| single top                       | $2.86\pm0.36$  |
| W+jets                           | data           |
| QCD multijet                     | data           |
|                                  |                |

#### Alpgen+Pythia



- While simulating W/Z + N-jets, we need to get the inclusive cross section and the relative cross section for exclusive N-jets
- We simulate by pairing Alpgen (LO matrix elements) and Pythia (parton showers)
  - Matrix Elements: Fixed order. Gives an accurate description of the hard process. Needed for N-jet description
  - 2 Parton showers: Needed for a realistic description of the final state in the detector
- Combine them using MLM scheme to avoid double counting.
- Cluster the showered partons into cone jets. Keep events only if each jet is matched to just one parton



#### Monte Carlo Corrections



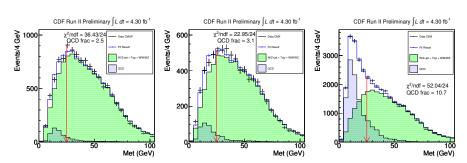
Need to take into account efficiency, reconstruction, resolution differences between data and MC:

- $\bullet$  Trigger Efficiencies: Data must pass the trigger to be selected  $\to$  apply these efficiencies to the MC
- Lepton Energy Scale, Energy Resolution, and Identification: MC does not do a perfect job of modeling detector response to leptons → correct energies and apply data/MC scale factors
- Luminosity Profile: not the same as for the data → reweight as a function of number of vertices



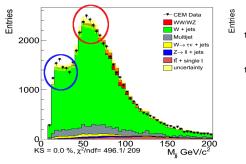
#### Modeled using data sidebands

- "Non isolated muons":
  - Using non-isolated events, events which pass all selection criteria except the requirement of lepton isolation.
  - Based on the rationale that non-isolated events are typically leptons contained in jets, and jets that contain energetic leptons are more likely to pass lepton identification cuts.


#### "AntiFlectrons":

- Some non-kinematic cuts for the electron (EHAD/EM ...) are used to reject fake electrons.
- Model is constructed of events which fail at least two of the non-kinematic cuts but pass all the kinematic cuts of the electron.

#### QCD estimation

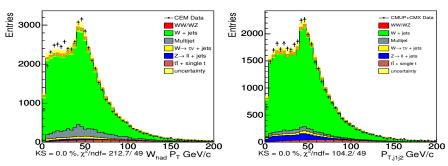



- QCD multijet events are characterized by low  $\mathcal{L}_T$ , so  $\mathcal{L}_T$  distribution is completely different from W+jets
- lacktriangle Best solution o Fit the  $\mathcal{E}_T$  distribution on data
- Extract the fraction of QCD and knowing all the others contributions can extract also a preliminary W + jets normalization (left completely free in the final fit)
- Systematic associated with the normalization estimated using different models (25%)



### Dijet mass shape I



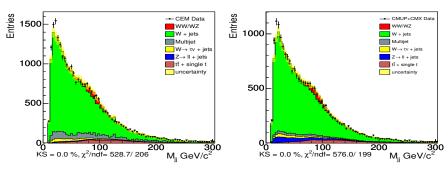





- lacktriangle With all the ingredients can look at the  $M_{jj}$
- The  $E_T$  threshold on the jets gives rise to two peaks:
  - At  $M_{jj} \sim$  20 GeV for almost collinear jets where the invariant mass is minimum and the combined dijet  $P_{T,jj}$  is maximum
  - The second one is at  $M_{jj}\sim$ 40 GeV, for back to back jets ( $\Delta\phi\sim\pi$ ), where the invariant mass is maximum.

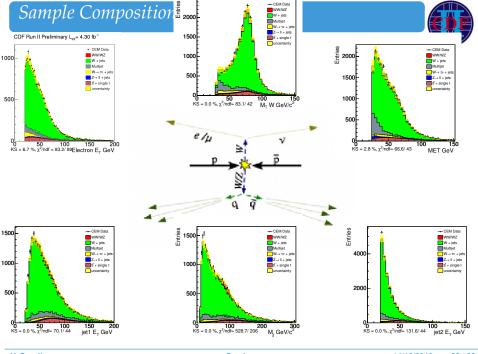
### Dijet mass shape II





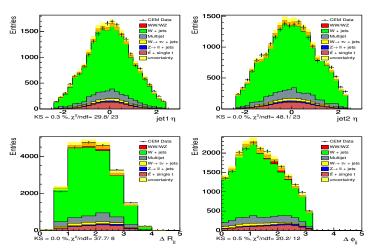

#### Two possible solutions:

- Cut lower in jet  $E_T o$  Kinematic region not well modeled
- Cut on the dijet  $p_T > 40$  GeV/c (that also shows mismodeling in the low  $p_T$  region):
  - $lue{1}$  Loose  $\sim$  40 % of the signal


### Dijet mass shape II



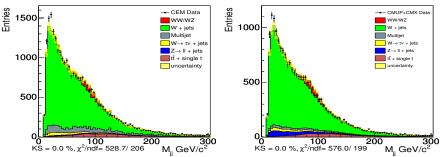



#### Two possible solutions:

- lacktriangle Cut lower in jet  $E_T o \mathsf{Kinematic}$  region not well modeled
- Cut on the dijet  $p_T > 40$  GeV/c (that also shows mismodeling in the low  $p_T$  region):
  - $\bigcirc$  Loose  $\sim$  40 % of the signal
  - ② Get a smooth distribution where the diboson is well separated from the W+jets

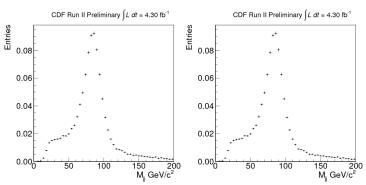


#### Angular modeling



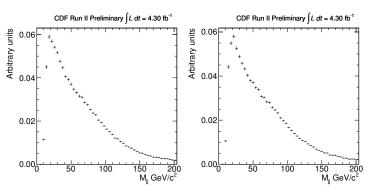



- Angular distributions fairly well modeled
- Energy distributions show some mismodeling  $\rightarrow$  systematic on W+jets shape


### Fit to $M_{jj}$ distribution

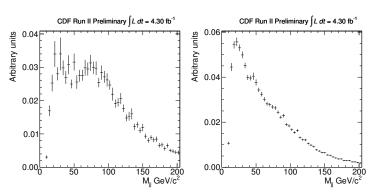





- Fit separately electrons and muons since they have different background contributions.
- Binned fit to the mjj shape taking as templates the histograms:
  - $\bigcirc$  Signal (WW and WZ)
    - $2 W + jets \longrightarrow$ completely free in the fit
    - $\bigcirc$  QCD  $\longrightarrow$  gaussian constraint to the value found in the  $E_T$  fit with 25% width.
    - Top+single top: constrained to the measured cross section
    - $\bigcirc$  Z+jets: constrained to the measured cross section

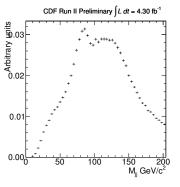


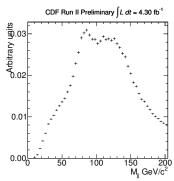



Diboson






- Diboson
- $\bullet$  W + jets

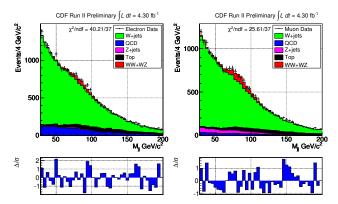





- Diboson
- $\bullet$  W + jets
- $\circ$  Z + jets








- Diboson
- $\bullet$  W + jets
- top+single top



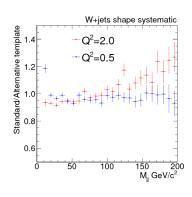
Perform the fit on data after checking for no bias

| Sample           | CEM             | CMUP + CMX      |
|------------------|-----------------|-----------------|
| W +jets          | $18010 \pm 531$ | $16673 \pm 482$ |
| Z+jets           | $353 \pm 42$    | $966 \pm 115$   |
| diboson          | $739 \pm 43$    | $645 \pm 37$    |
| top + single top | $1324 \pm 134$  | 1149± 115       |
| QCD              | $2375 \pm 594$  | $532 \pm 133$   |
| Total Prediction | $22801 \pm 810$ | $19965 \pm 527$ |
| Observed Events  | $22204 \pm 149$ | $19738 \pm 141$ |
|                  |                 |                 |



### Systematic summary

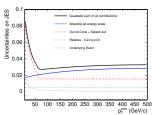


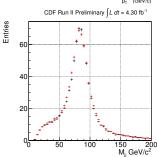

- Consider two classes of systematics:
  - systematics affecting signal extraction
  - systematics affecting signal cross-section
- Evaluated generating statistical trials with the varied templates and fitting with the standard ones.

| Affected                | Source            | Source Uncertainty (%) |            |
|-------------------------|-------------------|------------------------|------------|
| Quantity                |                   | Electrons              | Muons      |
| Number of Signal Events | QCD shape         | $\pm 4.5$              | ±3.9       |
|                         | $Q^2$             | $\pm 6.2$              | $\pm 6.1$  |
|                         | JES               | $\pm 6.3$              | $\pm 5.1$  |
|                         | JER               | $\pm 2.9$              | $\pm 1.4$  |
|                         | Total             | $\pm 10.3$             | $\pm 9.0$  |
| Cross Section           | Lepton Acceptance | ±2.0                   | ±2.0       |
|                         | ISR               | ±1.8                   | $\pm 1.4$  |
|                         | FSR               | $\pm 0.7$              | $\pm 2.6$  |
|                         | PDFs              | ±2.0                   | $\pm 2.0$  |
|                         | Luminosity        | $\pm 6.0$              | $\pm 6.0$  |
|                         | Total             | $\pm 12.4$             | $\pm 11.6$ |

#### *Shape systematic:* W + jets

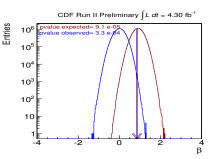


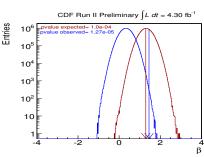

- Alpgen MC depends on a number of parameters:
  - Factorization and normalization scale  $Q^2 = M_W^2 + \sum p_T^2 \mbox{ which can be varied by a constant factor}$
  - 2  $k_T$  Scale Factor: Alpgen's scale factor for  $\alpha_s$  at each decay vertex.
  - Parton matching cluster p<sub>T</sub> threshold: the minimum p<sub>T</sub> for jet clusters that are used for matching procedure.
  - Parton matching clustering radius size: the size of the jet cone used when creating jet clusters for matching procedure → Alpgen authors recommend using the generator level cut.
- ullet The only significant effect is given by the  $Q^2$
- Double and halve it to obtain alternative templates




#### Other shape systematics

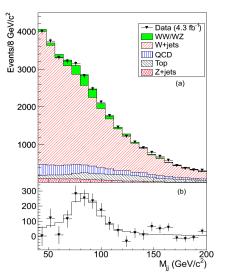



- Measurement is dominated by the Jet Energy Scale:
  - $lue{1}$  Parameterized as a function of  $p_T$
  - The uncertainty on each correction is derived by comparison of the data to MC or by comparison of different MC generators.
  - Even if the agreement between the data and the MC in the fit supports that the JES (that would induce a shift in the diboson template) is well calibrated, we still include a systematic error coming from this source.
  - Apply to all MC modeled processes at the same time
- Jet energy resolution on diboson template: the MC description of the jet resolution is compared to the resolution in data in γ+jet and dijet events.
- QCD shape systematic evaluated using different models






#### Significance estimation


- To quantify the significance of the signal we define as test statistic, the ratio,  $\beta$ , between the expected and the observed numbers of events.
- To take into account the systematic uncertainties we use a method called supremum p-value that maximizes the p-value with respect to all the combinations of systematics.
- We generate one set of pseudo-experiments with a variation of the fit templates according to some of the systematic sources.
- This is done for all possible combinations. For each set we evaluate the corresponding p-value. The worst case is taken.
- $\bullet$  The combined p-value is  $8.56\times10^{-8}$  that corresponds to 5.24  $\sigma$  found where 5.09  $\sigma$  was expected





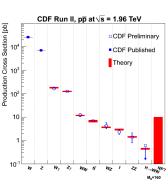
#### Cross section





We estimate  $1582 \pm 275 ({\rm stat.}) \pm 107 ({\rm syst.})$  events of  $WW+WZ \rightarrow \ell \nu + {\rm jets.}$ 

The resulting cross section is


$$\sigma(WW/WZ) = 18.1 \pm 3.3 (\mathrm{stat.}) \pm 2.5 (\mathrm{syst.}) \ \mathrm{pb}$$

that is in agreement with SM expectation (15.9  $\pm$  0.9 pb).

#### Conclusion



- Measured the cross section of WW/WZ ightarrow l 
  u +jets
  - PRL published on march 2010:
     Phys. Rev. Lett. 104, 101801 (2010)
  - Observation in lepton+jets final state.
  - http://www-cdf.fnal.gov/ physics/ewk/2010/WW\_WZ/ index.html
- Opens the way to diboson studies with jets
- Error on cross section dominated by the statistical uncertainty
  - ullet Tevatron will deliver 10  $fb^{-1}$  by the end of 2011 and eventually 16 fb<sup>-1</sup>
- Getting closer to Higgs sensitivity



# Backup

#### Electron Trigger



#### Level 1:

- an energy deposit of a minimum 8 GeV in the calorimeter tower;
- $E_{\rm HAD}/E_{\rm EM}$  is required to be less than 0.125 to reject hadronic particles;
- a track with  $p_T>8.34~{\rm GeV/c}$  found by the XFT is required to point to the tower.

#### Level 2:

- a calorimeter cluster is formed by adding adjacent towers with  $E_T > 7.5$  GeV to the "seed" tower found at Level 1;
- for the cluster, the requirements are  $E_T > 16$  GeV and  $E_{\rm HAD}/E_{\rm EM} < 0.125$ ;
- the Level 1 XFT requirement is confirmed.

#### Level 3:

- an EM object with  $E_T >$  18 GeV and  $E_{\rm HAD}/E_{\rm EM} < 0.125$  (confirmed);
- a fully reconstructed three-dimensional COT track with  $p_T > 9$  GeV/c is required to point to the cluster.

#### Muon trigger



#### Level 1:

- hits in one or more layers of the CMU or CMX chambers are found;
- for the CMU/CMP trigger, 3 or 4 additional hits in the CMP are required to be consistent with hits in the CMU;
- an XFT track with  $p_T > 4.09$  GeV/c (8.34 GeV/c) is demanded to match in the  $r \phi$  plane the hits found in the CMU/CMP (CMX);

#### Level 2:

• a COT reconstructed track in the transverse plane with  $p_T > 14.77 \text{ GeV/c}$ ;

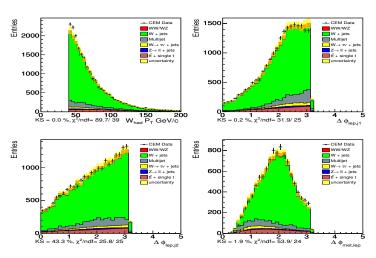
#### Level 3:

• a fully reconstructed three-dimensional COT track with  $p_T > 18$  GeV/c is required to match a track reconstructed in the muon chambers.

### Lepton Selection



| Variable                | Requirement                                  |
|-------------------------|----------------------------------------------|
| Fiduciality             | Detected in the active region of the CES/CEM |
| Track $ Z_0 $           | $\leq 60 \text{ cm}$                         |
| $E_T$                   | $>20~{\sf GeV}$                              |
| $p_T$                   | > 10 <b>GeV/c</b>                            |
| COT Axial segments      | $\geq 3$ with $\geq 5$ hits each             |
| COT Stereo segments     | $\geq 2$ with $\geq 5$ hits each             |
| E/p                     | $\leq 2$ (unless $p_t \geq 50$ GeV/c)        |
| $E_{HAD}/E_{EM}$        | $\leq 0.055 + 0.00043 \cdot E$               |
| $L_{\sf shr}$           | < 0.2                                        |
| lso/ $E_T$              | $\leq 0.1$                                   |
| Signed $\Delta X_{CES}$ | $-3 \le q \Delta X_{CES} \le 1.5$            |
| $ \Delta z_{CES} $      | $< 3 \ cm$                                   |
| $\chi^2_{\sf CES}$      | $\leq 10$                                    |


## Lepton Selection



| Variable                       | Requirement                               |  |
|--------------------------------|-------------------------------------------|--|
| $p_T$                          | > 20 GeV/c                                |  |
| $Iso/p_T$                      | $\leq 0.1$                                |  |
| $ z_0 $                        | $\leq 60~\mathrm{cm}$                     |  |
| $E_{EM}$                       | $\leq 2 + \max[0, (p-100) \cdot 0.0115]$  |  |
| $E_{HAD}$                      | $\leq 6 + \max[0, (p - 100) \cdot 0.028]$ |  |
| COT Axial segments             | $\geq 3$ with $\geq 5$ hits each          |  |
| COT Stereo segments            | $\geq 2$ with $\geq 5$ hits each          |  |
| $ d_0 $ for tracks w/ Si hits  | $< 0.2 \ cm$                              |  |
| $ d_0 $ for tracks w/o Si hits | $< 0.02 \ cm$                             |  |
| $ ho_{COT}$ for CMX muons      | > 140                                     |  |
| $\chi^2_{	extsf{COT}}$         | < 2.3                                     |  |
| $ \Delta X_{CMU} $             | $\leq 7 \; cm$                            |  |
| $ \Delta X_{\sf CMP} $         | $\leq 5~{ m cm}$                          |  |
| $ \Delta X_{\sf CMX} $         | $\leq 6~{\sf cm}$                         |  |
| CMU Fiduciality                | $x < x_{fid},  z < z_{fid}$               |  |
| CMP Fiduciality                | $x < x_{fid},  z < z_{fid} - 3 \; cm$     |  |
| CMX Fiduciality                | $x < x_{fid},  z < z_{fid} - 3 \; cm$     |  |

### Alpgen modeling





Angular distributions fairly well modeled