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Electrostatic charging on test masses of GW 
detector

• Unclear in origin, quantity and even sign
• Effects of charging:

o Interferers with optical position control
o Accumulation and motion of charges can generate fluctuating 

electric fields that could move the test mass at frequencies in 
the interferometer's sensitive band

o Attracts dust, reducing reflectance, increasing scattering and 
absorption
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Potentially limiting noise source

Electric field noise 
coupling to test 

mass motion



Charging mitigation at a-LIGO (Room Temperature)
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Mirror exposure to some tenth of mbar of a N2 plasma for a long time (~1 h)

D. Ugolini et al., Rev. Sci. Instrum., 82, 046108 (2011)

Can this method be applied at Cryogenic 
Temperature?



Residual gas adsorption on cold surfaces
Saturated vapour pressure from Honig and Hook (1960) Cryosorption depends on:

• surface temperature
• gas partial pressure

For T~10 K and p<10-10 mbar, the most common residual gas species in a
UHV chamber (except H2 and He) will be adsorbed, forming a molecular ice
(“frost”) on the surface
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If the LIGO neutralization method
will be applied at cryogenic
temperature, a significant layer
(~µm) of the injected N2 will be
cryosorbed on the mirror surface

Dramatic effects on optical 
properties and thermal noise



Low energy 
electrons 
irradiation

We propose to use electrons of variable but low energy (between 10
to 100 eV) to neutralize unwanted electrostatic charge on test mass
mirrors. Low energy selected electrons can indeed compensate
charges of both polarity on mirror optics.
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OUR PROPOSAL



Secondary Electron Yield
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Three-step process:

• Production of SE at a depth z

• Transport of the  SE toward the surface

• Emission of SE across the surface barrier

Secondary Electron emission

Electron mean free path up to ~10 nm 

Incident electrons 
current (Ip) Emitted electrons 

current (Iout)

SEY is an intrinsic surface 
property of materials 

Farady cup

Sample



Secondary Electron Yield
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Chemisorbed compounds modify the chemical bonds at the metal surface

L. A. Gonzalez et al., AIP Adv. (2017)



Secondary Electron Yield
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R. Cimino et al., Phys. Rev. Lett. (2012)

As received LHC-Cu sample

e-

sp3 à sp2 carbon surface contamination conversion

• SEY depends on the 
surface chemical state
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M. Angelucci et al., Phys. Rev. Res. (Rapid Comm.) (2021)

• SEY depends on the 
coverage thickness, even at 

sub-monolayer coverage

• SEY depends on 
the surface 
morphology

L. Spallino, J. Vac. Sci. Technol. B (2020)



Secondary Electron Yield
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L. A. Gonzalez et al., AIP Adv. (2017)

SEY of cold surfaces influenced by gas 
physisorption

Residual gas in a vacuum at 
cryogenic temperature1.6
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Secondary Electron Yield
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Not published data

H2O on 
Cu

H2O on 
Graphite 

HOPG

Ar on Cu

L. Spallino et al., Phys. Rev. Accel. 
Beams (2020)

SEY of gas condensed on a cryogenic surface



Using low energy electrons to neutralize 
electrostatic charging: a proof of principle

Secondary Electron Yield
SEY=Iout/Ip

Incident electrons 
current (Ip)

Emitted electrons 
current (Iout)
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Using low energy electrons to neutralize 
electrostatic charging: a proof of principle

Secondary Electron Yield
SEY=Iout/Ip

Incident electrons 
current (Ip)

Emitted electrons 
current (Iout)

The energy of the incident electrons can be opportunely 
tuned to neutralize positive and negative charges on the 

mirror’s dielectric surface
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To do (first steps!)
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- SEY studies on thin dielectric samples in neutral and unperturbed conditions.

- Quantification of the surface charge.

- Definition of electron beam parameters to induce surface charging/discharging. Study
of the surface charge induced (or removed) as a function of electron irradiation
parameters.
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To do (first steps!)
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- SEY studies on thin dielectric samples in neutral and
unperturbed conditions.

- Quantification of the surface charge by electrostatic
voltmeter.

- Definition of electron beam parameters to induce
surface charging/discharging. Study of the surface
charge induced (or removed) as a function of electron
irradiation parameters.

Extreme low continuous imping current (<10-7

C/mm2) finding best electron gun parameters

Pulsed mode (100 ns):
Ø Implementation of measuring system 

(Labview)
• Oscilloscope
• Waveform generator
• Remote control
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To do (first steps!)

16/06/2022

- SEY studies on thin dielectric samples in neutral and
unperturbed conditions.

- Quantification of the surface charge by electrostatic
voltmeter.

- Definition of electron beam parameters to induce
surface charging/discharging. Study of the surface
charge induced (or removed) as a function of electron
irradiation parameters.

• Labview interface for data acquisition
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To do (first steps!)

16/06/2022

- SEY studies on thin dielectric samples in neutral and
unperturbed conditions.

- Quantification of the surface charge by electrostatic
voltmeter.

- Definition of electron beam parameters to induce
surface charging/discharging. Study of the surface
charge induced (or removed) as a function of electron
irradiation parameters.

Labview implementation for the 
feedback control (charge measured –

irradiation parameter)
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Advantages

Ø Electrons do not significantly
penetrate into the mirror
surface due to their low mean
free path, so that minimal
effects on mirror quality are
expected.

Ø Electron guns are commercially available, can be stably placed and
immediately operated in UHV, and are compatible with cryogenic
environments.
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To be 
investigated!



Advantages

Mirror 
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To be 
investigated!

Electrons efficiently induce 
molecular ice nonthermal 

desorption



Cryogenic Vacuum Issues on GWD optics

Water Layer Thickness [m]

From KAGRA experience, simulations indicate:
• reflectivity gets affected, already after 100 nm of H2O ice
• ET maximum thermal budget (~100 mW/ 1 W) is expected to be 

exceeded already after ~1-10 nm of H2O ice!!!
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Residual gas adsorption on cold surfaces

The right evaluation of gas pressure allows to give reliable
estimates of ice thickness forming on the cold surface.

Langmuir (L) unit:

1 L = 1x 10-6 mbar x 1s

gas exposure of a surface (or dosage)

For sticking coefficient Sc= 1:
1 L ~ 1 Monolayer (ML) cryosorbed
for H2O, 1 ML ~ 0.3 nm 

à In 1x 10-10 mbar, it takes 10.000 s (~3h)
to build up a ML.
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Residual gas adsorption on cold surfaces

The right evaluation of gas pressure allows to give reliable
estimates of ice thickness forming on the cold surface.

Langmuir (L) unit:

1 L = 1x 10-6 mbar x 1s

gas exposure of a surface (or dosage)

For sticking coefficient Sc= 1:
1 L ~ 1 Monolayer (ML) cryosorbed
for H2O, 1 ML ~ 0.3 nm 

16/06/2022

à In 1x 10-12 mbar, it takes 1.000.000 s
(~300 h) to build up a ML.
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Active mitigation strategies: Wrap-up
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Possible if a charging mitigation method 
compliant with cryogenics is proved!



Mirror 

If Peff ~ 1x10-10 (H2O,CO,CO2, etc) mbar; sticking coefficient = 1

è 1 monolayer (~ 1015 mol/cm2~0.3 nm) will be cryosorbed in 10.000 s.
(~ 2.5nm/day ~ 10 times less than in KAGRA)

If we assume a mean ESD h= 0.1 mol./electron (as for H2O) @ 100eV.
(R. Dupuy et al. J. Appl. Phys. 128, 175304, 2020)

To remove 1 ML we need an el. current of: ~ 1 mAmps/cm2 in one second

… depositing less than 100 mW/ML/cm2 (not all el. energy goes in thermal heat!)

All in UHV, with marginal heating up of the mirrors and (possibly) reduced downtime.
Deserves further investigation!

Low energy electrons irradiation
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Take-home messages
• The electrostatic charge mitigation method so far adopted is inapplicable at cryogenic temperature, since a

significant layer of N2 will be cryosorbed on the mirror surface.

• An intense effort needs to be devoted to find new charging neutralization methods compliant with the
constraints derived by the use of cryogenic optics.

• Inevitably, when operating at cryogenic temperature, an ice layer will form on the mirrors’ surface. As the ice
layer grows, the mirror optical properties will deteriorate.

• An intense research and development effort is mandatory to properly control and opportunely mitigate such
frost formation.

If definitely proved, low-energy electrons allow both electrostatic 
charge mitigation and non-thermal ice desorption



Experimental stations at XUV MaSSLab -INFN

2 UHV systems (P~1 x 10-10 mbar) equipped with a
cryogenic manipulator (Tsample~10 – 300 K)

Ultra high vacuum systems 

main chamber 

preparation 
chamber 

fast-entry lock
a UHV system (P~1 x 10-10 mbar) for measurements at
RT

Main chamber

Common elements of the main chambers:

Ø Set-up for SEY measurements TPD and electron irradiation
Ø Gas line and Quadrupole Mass Spectrometer (QMS)
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Experimental stations at XUV MaSSLab -INFN

HE Chamber:
Ø + XPS set-up (Al and Ag 
monocromatic and Al and Mg 

nonmonocromatic sources)

Ø + Electron flood gun

Ø + Quadrupole Mass Spectrometer
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HE Chamber:
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Experimental stations at XUV MaSSLab -INFN
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We can host students, PhD students, post-
docs, researchers... 

...and for all curious minds feel 
free to contact us!

luisa.spallino@lnf.infn.it
marco.angelucci@lnf.infn.it

See also information on XUV 
beamlines at

http://dafne-light.lnf.infn.it/
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28 – 30 September 2022
Hotel Hermitage at La Biodola (Isola d'Elba) Italy

Registr
ations a

re 

open!
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Thank you!

Et@TO Workshop - L. Spallino, LNF-INFN

The team at LNF

M. Angelucci

R. Cimino

A. Liedl

R. Larciprete

and thanks to….
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Low Energy SEY

”Probabilistic model for the simulation of secondary electron emission”  
M. A. Furman and M. T. F. Pivi Phys. Rev. ST Accel. Beams 5, 124404 
(2002)

SEY: Total number of electrons 
emitted (TEE , TEY,...)

True secondaries: number of 
electrons emitted  between 0-
50 eV.  (if EP > 50 eV.)

Backscattered electrons 
(Reflected): number of 
electrons emitted at EP (+ D)

Rediffused electrons: number 
of electrons emitted between 
50 eV and EP – D (if EP > 50 eV.)
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Low Energy SEY
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D

Low Energy SEY
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Low Energy SEY
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Reflected electrons in Copper
Different Contributions
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Limit for the base operating vacuum in the ET 
LF tower

If PH2O ~ 1x 10-12 mbar à it takes ~11000 hours to form 12 nm 

A full year of operation!

This reasoning applies to all gases (CO, CO2, N2, etc.) that
have desorption temperatures higher than 10 K

Considering 1 W maximum thermal budget (new limit)

If PH2O ~ 1x 10-10 mbar à it takes (10.000 x 3-30) s (~9-90 h) to 
start observing detrimental effects!!!
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