ET Magnetic Noise WP

Andrea Chincarini, Irene Fiori

ET @ TO

Introduction - Main tasks of Magnetic noise WP

ANM-MN WP main tasks:

- Identify magnetic noise sources
- Identify ITF components where coupling occurs
- Define mitigation strategies to reduce ambient noise, especially close to ITF sensible spots
- Define mitigation strategies to reduce ITF magnetic susceptibility, to eventually comply with ET design
- Lay out the plan for the design, implementation, monitoring and management of the MN mitigation infrastructure

General overview on mitigation strategies

MN noise mitigation questions

What shielding factor is necessary? on what volume?

- Passive, active or both?
- Where to put them? What configurations?
- Materials? Environmental [vacuum] compatibility?

How much screened field homogeneity do we need? on what volume?

How do we monitor the solutions and potential anomalies / transients?

- Several configuration and solutions are possible, as well as the number and types of possible sensitive elements and sources.
 - Extensive simulations needed, possibly trying to set up a general framework divided by source type, solution, etc.
- Feld strength is an issue
 - B-H curve saturation
- Reproducibility and stability, additional noise
 - more challenging
- Long term "investment" in B-field mapping
 - Beware of hot spots in the screen configuration

magnetostatic shielding

several effects:

- nonlinearities in the B-H curve
- handling and material working
 - usually change towards a less performant B-H curve
- shield position, geometry and external field, uniformity
- junctions & screen topology

eddy current shielding

- Can be both passive and active
 - active HeCo are the standard in industry
- Mono-directional component
 - superimpose fields of different coils Helmholtz pair
- Most homogenous region $\rightarrow \sim R/2$
 - $\circ \quad \text{Large region} \rightarrow \text{large coils (2R)}$
- In passive configuration can be coupled to a resonant circuit to screen particularly nasty frequencies (i.e. 50Hz)
 - Nested solutions, combined approaches can be devised, high design freedom

Takeaway for Helmholtz coil: good homogeneity for its simplicity, versatile design, insufficient screening if used alone (passively)

more on passive solutions

Multi-layer \rightarrow less material & better performance: keep the layers spaced (mech and thermal decoupling)

Spherical shells \rightarrow best shielding and homogeneity

- best strategy is to shield the shield
 - Values of **S>100** are "easily" achievable
 - Relatively large volumes with passive tech.
 & record shielding values are in operation

Takeaway: currently, only the passive solution guarantees the highest shielding factor, absence of maintenance, simplicity & operational stability

However, both costs and ET configuration constraints render this approach not always feasible

Best passively-shielded volumes to date:

- Paul Scherrer Institute (PSI), Switzerland
 - TSV = 3 m3 (in a 25 m3 volume):
 - 1e5 < S < 1e6
 - residual field in chamber: B <1e-10 T
- Technische Universität München (TUM)
 - TSV = 4.1 m^3
 - S > 1e6
 - residual field in chamber: B <1e-10 T

alternatives: magnet configuration

Several papers on perm. magnet shape & topology optimization.

- Mainly referred to specific applications but conceptually one could imagine a suitable set of magnets to shape a [local] field with given characteristics (within limits)
 - minimize dipole moment
- main target: test mass / big optics alignment

shaped field permanent magnets, arrangement and optimization examples:

Z. Wang; T. Song; Z. R. Dong; Q. L. Wang; H. S. Wang All Authors

alternatives: active shielding

Ô

Active magnetic shielding with magneto-impedance ser	Prepared for submission to JINST				
Mechanics ISEM-Tokyo Article type: Research Article Authors: Okazaki, Yasuo ^{a;*} Yanase, Shunji ^a Sugimoto, Noriko ^a	Study of active geomagnetic shielding coils system for JUNO				
apparently not too many papers on the		G. Zhang, ^{<i>a</i>,1} J. Songwadhana, ^{<i>b</i>,1} H. Lu, ^{<i>a</i>,1} Y. Yan, ^{<i>b</i>,1} N. Morozov, ^{<i>c</i>} F. Ning, ^{<i>a</i>} P. Zhang, ^{<i>a</i>} C. Yang, ^{<i>a</i>} K. Khosonthongkee, ^{<i>b</i>} A. Limphirat, ^{<i>b</i>} T. Yan, ^{<i>b</i>} T. Payupol, ^{<i>e</i>} N. Suwonjandee, ^{<i>e</i>} B. Asavapibhop, ^{<i>e</i>} U. Sawangwit, ^{<i>f</i>} A. Sangka, ^{<i>g</i>} Z. Zhu, ^{<i>a</i>}			
topic	4554 Active Ma	X. Wang, ^{a,a} X. Liu ^{a,a} and Z. Xie ^{a,a} IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 11, NOVEMBER 2012			
	K. Kobayashi ¹ , A. Kon ¹ , M. Yoshizawa ¹ , and Y. Uchikawa ²				
	¹ Faculty of Engineering, Iwate University, Morioka, Iwate 020-8551, Japan ² School of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan				
Open • Submitted: 07 July 2021 • Accepted: 08 November 2021 • Published Online: 03 December 2021	A otiva magnatic	***elding is a cheap and effective method for shielding magnetic noise that allows shielding the very low frequencies. In ing, it is possible to shield magnetic field sensor positions. However, there is a problem in which the shielding factor			
high performance active noise control system	n for magneti	itions. Also, the problem of cross-axial interference occurs when the magnetic field sensor cannot be installed at the ation coils, since the measurement object is installed at the center. In this study, an arrangement of the magnetic			
ields	5	lves these problems is proposed. This method installs pairs of magnetic field sensors symmetrically offset from axis. An experimental demonstration was carried out in a small model in order to prove the effectiveness of the results show that a high shielding factor is obtained, even if the magnetic field sensor is not installed at the center.			
eview of Scientific Instruments 92, 124702 (2021); https://doi.org/10.1063/5.0062650		e magnetic shielding, cross-axial interference, magnetic field sensor position, symmetric sensor method.			
Tadas Pyragius ^{a)} <i>and</i> ⁽ Kasper Jensen ^{a)}		(

commercial applications

Several commercial solutions are available: can be invaluable for some classes of items. According to specs:

- S > 50 field reduction at 50/60 Hz
- S > 400 field reduction at DC
- Bandwidth: DC to 5 kHz

æ	SPIC	CER C	CONS	ULTING	SEDI CALAR	0.098 -	0.002	um	
	SC24	FIELD C	ANCELI	ING SYSTEM		0.044	0.001	Read	
						0.052	0.002	(gunday)	
	×	Y	z		1	0.070	0.001		
6	0	0	0			Eald Canceling is I	N .	. Adam	3

exotic solutions

Superconductors, metamaterials & composites ... but also: intelligent control for motors (magneto-mechanic noise) and other amenities

all fun stuff but not ready - as is - for reliable application.

Nice to know they exist but use as very last resort

induction motors		То
Artem $Ermolaev^1$, Vladimir Erofeev 2 , Alexandr $Plekhov^3$, $DmitriyTitov^4$	Open Access Published: 20 August 2015	Ros
^{1, 2} Research Laboratory Controlled Vibration Protection of Electromechanical Systems, Mechanical Russia	A Magnetic Wormhole	Phy
^{3, 4} Institute of Electrical Power Engineering, Nizhny Novgorod State Technical University n.a. R.E. Al ¹ Corresponding author	Jordi Prat-Camps, Carles Navau & Alvaro Sanchez	
Vibroengineering PROCEDIA, Vol. 38, 2021, p. 172-178. https://doi.org/10.21595/yp.2021.22078 Received 26 May 2021; received in revised form 10 June 2021; accepted 17 June 2021; published 28 June 2021		
Copyright © 2021 Artem Ermolaev, et al. This is an open access article distributed under the Creative Commons Attribution and reproduction in any medium provided the original work is properly cited	Scientific Reports 5, Article number: 12488 (2015) Cite thi	s article
	142k Accesses 36 Citations 630 Altmetric Metrics	

Magnetic noise due to environmental vibration in magnetically-shielded room

Publisher: IEEE Cite This 📌 PDF

T. Abe; K. Yamazaki; N. Fujimaki; S. Miyauchi; K. Kobayashi; K. Fujiwara; K. Muramatsu All Authors

Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids

Alvaro Sanchez^{2,1}, Carles Navau¹, Jordi Prat-Camps¹ and Du-Xing Chen¹ Published 22 September 2011 · © IOP Publishing and Deutsche Physikalische Gesellschaft New Journal of Physics, Volume 13, September 2011

Citation Alvaro Sanchez et al 2011 New J. Phys. 13 093034

A quasistatic magnetic cloak

Ján Souc¹, Mykola Solovyov¹, Fedor Gömöry¹, Jordi Prat-Camps², Carles Navau² and Alvaro Sanchez^{3,2} Published 9 May 2013 • © IOP Publishing and Deutsche Physikalische Gesellschaft

New Journal of Physics, Volume 15, May 2013

Citation Ján Souc et al 2013 New J. Phys. 15 053019

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Sea

Tailoring Magnetic Fields in Inaccessible Regions

Rosa Mach-Batlle, Mark G. Bason, Nuria Del-Valle, and Jordi Prat-Camps Phys. Rev. Lett. 125, 177204 - Published 23 October 2020

Electromagnetic cloaking by layered structure of

homogeneous isotropic materials

Ying Huang, Yijun Feng, and Tian Jiang

Author Information
Q Find other works by these authors

solutions in order of preference

1. passive solution

- a. pros: robustness, durability, well tested, very high S achievable, easily hybridizable, notch filters, cost
- b. cons: geometry constraints, size / weight, high S needs very detailed engineering, cost

2. source canceling [dipole minimization] where applicable

- a. pros: light, small solution for highly localized sources
- b. cons: works efficiently only for a limited number of applications, calibration issues, residual field, interactions and controls

3. active screening

- a. pros: may provide adequate screening on a wide range of disturbances, commercially available
- b. cons: source of extra noise, hereditary of the coil constraints, stability and control problems

4. hybrid solutions

- a. pros: extended frequency range, help whenever size/cost/geometry do not allow a single solution
- b. cons: hereditary of the cons of the component solutions + complexity

5. exotic solutions [as the very last resort]

- a. pros: cool for studying and paper publishing, potentially highly performant
- b. cons: validation and applicability is controversial, manufacturing and reliability unknown

Simulations, tests and implementations are not enough:

- Status and fluctuations must be monitored
 - wide array of sensor types needed depending on application, intensity, gradient, ...
 - Gradient / Vibrating Reed / Vibrating Sample / Inductive / Flux gate / MEMS / Hall / ...

• After the mitigation solution implementation:

- Remove residual magnetization due to construction and handling with a decreasing alternating current through demagnetization coils (degaussing).
- Verify homogeneity
 - Locate hot spots and install sensor there
- integrate with DAQ

Calculation of an optimized design of magnetic shields with integrated demagnetization coils

AIP Advances 6, 075220 (2016); https://doi.org/10.1063/1.4960329

(Z. Sun^{1, a)}, A. Schnabel², M. Burghoff², and L. Li¹

MN is linked with several other subsystems

for instance:

Investigation of magnetic noise in Advanced Virgo

• PAY

- test-mass actuators / marionetta design
- material, design, eddy currents, ... see Cirone et al.
- high freq coupling behaviour \rightarrow electronics / acquisition ?
- ENV
 - sensors, injection coils, ...
- VAC

. . .

• material compatibility for in-vacuum mitigation solutions

A Cirone^{1,2}, I Fiori³, F Paoletti⁴, M M Perez⁵, A R Rodríguez⁵, B L Swinkels⁶, A M Vazquez⁵, G Gemme¹, A Chincarini¹

SHORT TERM R&D

Short-term tasks [0-12 m]: simulations and coupling function

1. Simulation framework

- a. short term activity: input characterization of most commonly used material
 - i. realistic B-H curves, conductivity, mech properties, etc [exper. check whenever possible]
- b. <u>short-term activity</u>: set up the simulation framework for passive solutions
 - i. study standard set of geometries, material and optimizations. Model effect of AdV large injection coils
 - ii. study perm. magnets/driving coil configurations for test mass / optics actuators

2. Coupling models

- a. <u>short-term activity</u>: phenomenological modeling of the coupling function [on AdV]
 - i. \rightarrow finer estimation of ET MN budget
 - ii. experimental validation pending a functioning VIRGO IFO
- b. <u>short-term activity</u>: create/update the parametric MN budget curve into the ET sensitivity software tool (PyGWINC)

Short-term tasks [0-12 m]: experimental set-up

3. Environmental source catalogue

- a. short-term activity: start implementation of a database of known environmental sources (in AdV)
 - i. i.e. chiller, pumps, heaters, ... start with most obvious and known items
 - ii. characterize source field shape (coarse est.) and intensity vs distance

4. Experimental setup

- a. <u>short-term activity</u>: cost / feasibility & design of an experimental room @ EGO for testing and validation of small-volume mitigation strategies
 - i. room space, instrumentation, sensing, driving, acquisition, ...

Test items 2022: AdV+ detection bench mitigation study [faraday isolator]

Test items 2022/23: test-mass actuators configuration studies, optical benches magnetic characterization

current MN ongoing activity

- 1. source study simplified model based on measures
- 2. FEA implementation & optimization [simulated equivalent source]
- 3. FEA simple Fe screen design
- 4. Model validation (experiment)
- 5. FEA realistic screen optimization
- 6. Screen prototype, model validation, adaptation as needed
- 7. FEA final analysis
- 8. final prototype
- 9. test & acceptance

current MN ongoing activity

- 1. source study simplified model based on measures
- 2. FEA implementation & optimization [simulated equivalent source]
- 3. FEA simple Fe screen design
- 4. Model validation (experiment)
- 5. FEA realistic screen optimization
- 6. Screen prototype, model validation, adaptation as needed
- 7. FEA final analysis
- 8. final prototype
- 9. test & acceptance

The end ...