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Virgo places sensitive to magnetic noise

e Present interferometers, like -

Virgo, are sensitive to
environmental magnetic input
fields Cleaner
e Several sources are part of

the interferometer

infrastructure

e Coupling occurs at oo Farasa
magnetized components y N ] H\}
(e.g. magnetic actuators of eser PRM POP
mirrors and suspension

chains, Faraday isolators, ...)
or conductive materials
(because of Eddy currents)
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Current & future magnetic noise projection on sensitivity
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e Measurements at LIGO and Virgo
during O3 show that coupling with )
external magnetic fields is large i
especially at low frequencies ]
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e Mitigation requires to :

- reduce environmental fields
close to sensitive parts by '
mitigating sources

magetic coupling [m/T]
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- identify and properly shield :
coupling locations
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Faraday isolators

Focus on coupling from Faraday isolators

Faraday isolators are optical diodes made of a
magneto-optic crystal immersed in a intense static magnetic
field (~1-1.5T).

At Virgo one F.I. is placed on input and output port
suspended benches, named SIB1 (Suspended Injection
Bench) and SDB1 (Suspended Detection Bench)
respectively

Industrial component :

- Exact composition & magnetization unknown

- Different rings of magnets magnetized in radial or axial
direction (Halbach configuration)

2
et Quartz rotator
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" Magnotsoptica ros SDB1 Faraday Isolator (1T)



Magnet modelling

e Measured a 2D map of the static
magnetic Field of the spare F.I.

e Design a model of the F.I. magnet
that best fits the measured data :
adopt a magnetized cylinder model

e Optimal dimensions found using
chi squared method with the grid of
measurements

e Parameters for the cylinder :
length, thickness, internal radius

e Equivalent magnetic moment :

M =74 N*m/T
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Simulated vacuum chamber &
largest metallic (conductive)
structures on the bench
Simulated two 1m diameter
coils in anti-phase configuration
at opposite sides of the vacuum
chamber, injecting unitary
current for various frequencies
(range 1-1000Hz)

Output of the simulation :
Magnetic field at the position of
the Faraday isolator (1.5T, in
blue)



Force on the bench

N/A ]
Force & Torque calculations
e Farfield hypothesis : Fl is
supposed uniformly magnetized on ool ] |
its volume such that it is possible to — iﬁiﬁi;2?22’5?{;2?;"&2?:&‘?2“
use the equivalent dipole 7 7 e
Torque on the bench H
N.m/A
T =uxB F=(u-V)B
e Force (N) and Torque (N*m) for
unitary current and number of turns sl |
of the coils, along the axes of the
—— Torque around mode cleaner direction
IMC reference system o e s i
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m/A

Displacement transfer function |

10-11

e Free mass mechanical model il

B F
X==— o=IT
m

—— Displacement in MC direction
—— Displacement in interferometer direction
—— Displacement in vertical direction

10°
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e Displacement (m) and Angle (rad)
transfer function for unitary current rad/A
and turns

e Final displacement prediction is

obtained by correcting
displacement by adding a -y
component due to rotation

- —— Angle around MC direction
—— Angle around interferometer direction
—— Angle around vertical direction

Dcorr =D + ddihedron * (COS(HIFO) - COS(QIF) * Cos(evertical))

:
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Experimental validation

e The displacement of SIB1 along the
Mode Cleaner axis can be measured
using the reference cavity (RFC) sensor
with good accuracy (10°"* m/\Hz)

e Coils putin anti-phase setup at a 18°
angle with Input mode cleaner axis

e Injecting a current white noise (0.025
A/NHz in spectral density) and
measuring bench displacement using
the reference cavity signal
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Experimental results

calibrated RFC signal
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Possible error sources

Simulation

e Mechanic model : pendulum resonance at lower
(~0.6Hz) frequencies, dihedron resonances at
higher frequencies

e Uncertainties on material conductivities and
magnetic properties

e Meshing (~11% error at the center of the coils)

e F.I. magnetic model

Magnets of the marionette

Measurement

e Statistical uncertainties : average on 30 samples

e Calibration of experimental setup

e Influence of magnets actuators of the upper
stage (marionette)
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B - FLUX DENSITY-GAUSS

Shielding

e Sensitive optical components on the updated version of the SDB1 bench
set target attenuation factor : ~100 (defined as the ratio of magnetic field
norm at a specified position on the bench with and without screen)

e Double layer to avoid saturation : inner layer of ultra-pure iron, outer layer
of mu-metal

e  Space constraints - optimization of the layers

e lterative process : measurements and simulation (1st experimental
validation was a success)
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Final screen for SDB1 Faraday "

Realistic screen prototype :
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Geometrical constraints in front of and behind
the Faraday Isolator

Tight mechanical and thermal requirements
(Peltier cell)

Assembly problematics
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Conclusions

Low frequency magnetic noise is one
important limiting factor of future
detectors sensitivity

We have illustrated a paradigm for the
measurement of the coupling to
critical components and the mitigation
of the coupling

A Faraday shield prototype is being
produced to test mechanical details
and assembly
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Next steps

e During the advanced Virgo commissioning, the coupling measurement will be
repeated in the same and other interesting locations, to eventually produce a budget
of magnetic noise on the Virgo sensitivity

e For E.T. : extrapolated projection indicates that a reduction factor of up to ~10%4 is
needed below ~30Hz (https://arxiv.org/abs/2110.14730 K. Janssens et al, Phys.
Rev. D 104, 122006)

Concerning the F.I. shield :

e The final shield will be realized and subject to annealing procedure (to recover
shields magnetic properties)
e The final F.l. shield installation is currently foreseen for AdV+ phase Il
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https://arxiv.org/abs/2110.14730

Backup - Eddy currents corrections

Eestialtut ADsaises Sl e Magnetic field generated by

the Eddy currents counters

the one generated by the coils
ddp

=
dt

e Effects of the Eddy currents
are more important at high
frequency

e Eddy currents locally distort
the magnetic field

e Generates a force on the
bench

=> High frequencies movements
are less critical




