Radiation effects for the next generation of synchrotron radiation facilities PhD Defence

Introduction

Generation of narrow bandwidth Synchrotron radiation

> Undulator / FEL> Thomson Scattering

$$\langle P_{ower}
angle \propto \gamma^2 U_{field}$$

$$\langle\lambda
angle \propto rac{\lambda_f}{\gamma^2}$$

24/05/2022

2/29

Introduction

$$\langle P_{ower}
angle \propto \gamma^2 U_{field}$$

 $\langle\lambda
angle \propto rac{\lambda_f}{\gamma^2}$

Electron Energy for FEL Thomson Scattering

- eV -> 1 µm : Macroscale Material properties Biological & Chemical processes
- keV <nm : Medical treatment, invivo imaging, nuclear & atomic research
- MeV <pm : Astro-, Quantum & Hadron physics

~10⁵

~10³

~50

24/05/2022

Thesis Overview

100 150

I. Self-fields

II. Thomson scattering

Retarded time
Models
1D
2D
3D

Degenerate Cavity
Energy Compensation
Carrier Envelope Phase

Thesis Overview

Overarching Theme

24/05/2022

5/29

I. Self-fields

II. Thomson scattering

Lienard Wiechert Potentials

$$ec{E}_{LW} = ec{E}_{Coulomb} + ec{E}_{Radiation}$$

Extended Introduction

FEL

Marcel Ruijter

Current km size – LINAC – to reach energy

- > High brightness for radiation-bunch interaction
- ▶ High coherency \Leftrightarrow power $\propto N_e^{4/3}$

FEL

> Current km size – LINAC – to reach energy

- > High brightness for radiation-bunch interaction
- > High coherency \Leftrightarrow power $\propto N_e^{4/3}$

Extended Introduction

7/29

FEL

> Current km size – LINAC – to reach energy

- > High brightness for radiation-bunch interaction
- > High coherency \Leftrightarrow power $\propto N_e^{4/3}$
 - ⇒ Compression DBA

Extended Introduction

Retarded time: cτ 1D Model

Derbenev 1995, Saldin 1997

Focus on wakefield (total electric field)

Criteria of applicability

$$\frac{R}{\gamma^3} \ll \sigma_z \qquad \qquad \frac{\sigma_r}{\sigma_z} \ll \left(\frac{R}{\sigma_z}\right)^{\frac{1}{3}}$$

1D Model

Derbenev 1995, Saldin 1997

Focus on wakefield (total electric field)

Criteria of applicability

$$\frac{R}{\gamma^3} \ll \sigma_z \qquad \qquad \frac{\sigma_r}{\sigma_z} \ll \left(\frac{R}{\sigma_z}\right)^{\frac{1}{3}}$$

- Does it hold for large differences in transverse size bunch?
- > What are the effects as the bunch focusses?

24/05/2022

10/29

1D Model

Revisited

$$R = \frac{\gamma \beta_{\perp} m c^2}{e B_0}$$

$$\frac{c\tau}{2R} - \sin\left(\frac{\beta c\tau}{2R} + \frac{\delta\vartheta}{2}\right) = 0$$

1D Model

Revisited

 $R = \frac{\gamma \beta_\perp m c^2}{e B_0}$

 $\frac{c\tau}{2R} - \sin\left(\frac{\beta c\tau}{2R} + \frac{\delta\vartheta}{2}\right) = 0$

 $\int_{c\tau} dct \vec{\beta} \qquad \bullet \quad \vec{r}_{s}' \\ \vec{\delta} \vec{r} \qquad c\tau \\ R \\ \vec{\delta} \vec{v} \qquad R \\ \vec{\delta} \vec{v} \qquad \vec{r}_{o} \\ \vec{\delta} \vec{v} \qquad \vec{\delta} \vec{v} \qquad \vec{\delta} \vec{v} \\ \vec{\delta} \vec{v} \qquad \vec{\delta} \vec{v} \vec{v} \qquad \vec{\delta} \vec{v} \vec{v} \qquad \vec{\delta} \vec{v} \vec{v} \vec{v} \vec{v} \vec{v} \vec{v} \vec$

Argument sine $\leq \pi/2$ \Rightarrow series up to 3rd order *always* suffice

23/05/22

1D Model

Revisited

 $\frac{c\tau}{2R} - \sin\left(\frac{\beta c\tau}{2R} + \frac{\delta\vartheta}{2}\right) = 0$ $R = \frac{\gamma\beta_{\perp}mc^2}{eB_0}$

Behaviour of $c\tau$

Three approximated relations derived

Relative error

1D Model

Marcel Ruijter

$$ec{E}_{LW} = ec{E}_{Coulomb} + ec{E}_{Radiation}$$

$$ec{E}_{Coulomb} \propto \left(rac{1}{\gamma c au}
ight)^2$$

$$ec{E}_{Radiation} \propto \left(rac{1}{c au}
ight)$$

14/29

24/05/2022

1D Model

24/05/2022

15/29

 $R = 1.00 \cdot 10^{0} \text{[m]}, \ \delta S = 1.00 \cdot 10^{-6} \text{[m]}$

2D Model

2D Model

 $ec{E}_{Coulomb} \propto \left(rac{1}{\gamma c au}
ight)^2$ $ec{E}_{Radiation} \propto \left(rac{1}{c au}
ight)$

17/29

2D Model

3D Model

Model for a bunch traveling inside a dipole

For research developed own Thomson & Particle tracking code:

Classical: Linear & Non-Linear regime

Brief Overview

Scattering of High intensity lasers on Electrons

- Laser cavity: Fabry PerotDegernerate Cavity
- Chirped Pulse Amplification
 Energy Compensation
 Carrier Envelope Phase

 $I[W/cm^2] \sim 10^{14} - a_0 < 10^{-2}$

 $I[W/cm^2] \sim 10^{18} - a_0 \sim 1$

Laser cavity: Fabry Perot $I[W/cm^2] \sim 10^{14} - a_0 < 10^{-2} \Rightarrow$ Linear Thomson scattering

- Effect of Degenerate Cavity
- > Higher modes n > 10

- Degenerate mode Power ~ 20% \geq
- Degenerate modes incoherent summation suffices. $W_e \sim W_0$
- No distinction between different modes in Thomson spectrum \geq

Degenerate Cavity

Energy Compensation

Linear Thomson scattering Compensation of electron energy by chirped laser

- Increase flux through larger bunch charge
- Two geometries

- Retrieval of ideal Thomson spectrum
- Partial compensation if

Marcel Ruijter

- Mismatch in chirp & electron energy \succ
- Uncorrelated energy spread \succ

Energy Compensation

- → $a_0 \ge 1$: Laser too intense to measure (matter turns into plasma)
- > Carrier Envelope Phase : $L_{pulse} \sim \lambda_L$

Ruijter et al, 2021 DOI: 10.3390/cryst11050528

24/05/2022

26/29

Carrier Envelope Phase

> Non-linear regime \Rightarrow emission of harmonics

24/05/2022

27/29

- Possible to measure through Thomson scattering
 - > Spectrum
 - Angular Emission

Diagnostic tool \Rightarrow low $\gamma \Rightarrow \lambda \sim 200$ nm & remain classical

Conclusions

I. Self-Fields

- ► 1D model
 - Extension
 - Relations Coulomb or Radiation field dominant
- > 2D model
 - > Asymmetry in behaviour of $c\tau$
 - Region where Radiation field is zero
- > 3D model
 - Good agreement numerical and approximations
 - Optimize code & parallelisation

Conclusions

II. Thomson Scattering

- Effect of Degenerate Cavity
 - Coherent summation might be required
 - > For 20% power in higher modes incoherent summation sufficies within W_0
 - > No distinction between different modes in Thomson spectrum
- Energy Compensation
 - Two geometries
 - Could increase flux through larger bunch charge
 - Quadratic chirp
- Carrier Envelope Phase: Thomson scattering as diagnostic Tool
 - > Requires $a_0 > 1$ for harmonics to overlap
 - Shift in energy peaks of harmonics

Lorentz Transformations with acceleration

Uniform linear motion motion (2D)

Retarded time 2D

γ = 10³, R= 5[m], δr

Uniform linear $\delta r = 10^{-3} [m]$

Circular large $\delta r = 0.5 [m]$

Circular small $\delta r = 10^{-3} [m]$

Focussing Effect E_{LW}

Meaning a₀

$$a_0 = \frac{eA_0}{mc^2} = \frac{eE_0}{mc\omega_{U_f}} = \frac{eB_0}{mc\omega_{U_f}}$$
(1.4)

and is related to the energy density of the field $(U_f \propto (\omega_{U_f} a_0)^2)$. It also describes when higher harmonics by an electron are emitted. For this we need the quantum picture of this parameter: a_0 represents the energy gain of an electron within one Compton wavelength per photon [27, 31, 32]. If $a_0 \ge 1$ then more than one photon is absorbed by the electron and emitted as one, thus giving the higher harmonics.

 $\omega \propto rac{\omega_l}{f(artheta)+\chi}$

Scattering Classical vs Quantum

 $\chi = 2 \frac{\hbar \gamma (1 + \beta) \omega_l}{mc^2} \approx 4 \frac{\hbar \gamma \omega_l}{mc^2}$

24/05/2022

Thomson Dynamics linearly polarized laser pulse

CEP – Harmonics & Interference

F