Coalescence afterburner with PYTHIA 8 input

¹University of Bologna ²INFN, Bologna

F. Bellini¹ and S. Tripathy²

Socies Goal: implement an afterburner based on the state-of-the-art coalescence modelling to be used to generate (anti)nuclei in commonly-employed MC event generators

Introduction

Goal: implement an afterburner based on the state-of-the-art coalescence modelling to be used to generate (anti)nuclei in commonly-employed MC event generators

Why PYTHIA 8:

- Commonly employed in high-energy physics, tested and tuned at LHC energies
- Newest development of PYTHIA8/Angantyr that extends PYTHIA to describe Pb-Pb phenomenology (JHEP 10 (2018) 134)
 - potential for new developments and responsiveness of the developers to questions/requests...
- To be complementary to the effort already ongoing with EPOS3 (Maxi, Luca)

Introduction

- 1. (anti)proton spectrum input: we found a tune of PYTHIA 8 that reproduces the p and pbar measured spectra in minimum bias pp collisions
 - Check that other basic observables are reproduced (i.e. multiplicity) Minimum bias only: representative for astrophysics, min. bias data only at low energy

 - We do not rescale the proton spectrum
 - [reminder] We do not have measurements of the source in minimum bias pp at the LHC
- 2. Event-by-event coalescence mechanism: implementation ongoing • implemented simple coalescence (no Wigner function, only the p_0 criterium) Move to the Wigner approach (ongoing), with nucleons emitted from a gaussian source

- First step: vary settings for basic processes and check with standard LHC tunes
 - Default: MPI, CR, ISR and FSR on
 - MPI off
 - MPI on, CR off
 - MPI on, CR on, ISR, FSR off
 - MPI off, CR off, ISR, FSR off
- **Tune 5** (also referred as 4C tune): modified multi-parton interaction parameters for better agreement with some early key LHC numbers
- **Tune 14:** the Monash 2013 tune by Peter Skands at al. [1] to both e+e- and pp data. Widely compared with ALICE data

Data comparison (pseudorapidity density)

- First step: vary settings for basic processes and check with standard LHC tunes
 - Default: MPI, CR, ISR and FSR on
 - MPI off
 - MPI on, CR off
 - MPI on, CR on, ISR, FSR off
 - MPI off, CR off, ISR, FSR off
- **Tune 5** (also referred as 4C tune): modified multi-parton interaction parameters for better agreement with some early key LHC numbers
- **Tune 14:** the Monash 2013 tune by Peter Skands at al. [1] to both e+e- and pp data. Widely compared with ALICE data
- Only default settings for both tune 5 and tune 14 successfully reproduce data

Data comparison (pseudorapidity density)

- First step: vary settings for basic processes and check with standard LHC tunes
 - Default: MPI, CR, ISR and FSR on
 - MPI off
 - MPI on, CR off
 - MPI on, CR on, ISR, FSR off
 - MPI off, CR off, ISR, FSR off
- **Tune 5** (also referred as 4C tune): modified multi-parton interaction parameters for better agreement with some early key LHC numbers
- **Tune 14:** the Monash 2013 tune by Peter Skands at al. [1] to both e+e- and pp data. Widely compared with ALICE data
- Only default settings for both tune 5 and tune 14 successfully reproduce data
- **Next step:** proton and antiproton spectra

Data comparison (pseudorapidity density)

Data comparison (Proton and anti-proton p_T spectra)

None of the basic settings are able to describe the proton/antiproton spectra in complete p_T range and reproduce the final state multiplicity simultaneously

- Default colour reconnection (CR) mode is the MPI-based original Pythia 8 scheme
- CR mode 2: The newer CR scheme builds on the minimization of the string length as well as the colour rules from QCD (QCD-based CR)

PYTHIA8 CR mode 2

Parameter	Monash	Mode 0	Mode 2	Mode
StringPT:sigma	= 0.335	= 0.335	= 0.335	= 0.33
StringZ:aLund	= 0.68	= 0.36	= 0.36	= 0.36
StringZ:bLund	= 0.98	= 0.56	= 0.56	= 0.56
StringFlav:probQQtoQ	= 0.081	= 0.078	= 0.078	= 0.07
StringFlav:ProbStoUD	= 0.217	= 0.2	= 0.2	= 0.2
StringFlav:probQQ1toQQ0join	= 0.5,	= 0.0275,	= 0.0275,	= 0.02
	0.7,	0.0275,	0.0275,	0.027
	0.9,	0.0275,	0.0275,	0.027
	1.0	0.0275	0.0275	0.027
MultiPartonInteractions:pT0Ref	= 2.28	= 2.12	= 2.15	= 2.05
BeamRemnants:remnantMode	= 0	= 1	= 1	= 1
BeamRemnants:saturation	-	= 5	= 5	= 5
ColourReconnection:mode	= 0	= 1	= 1	= 1
ColourReconnection:allowDoubleJunRem	= on	= off	= off	= off
ColourReconnection:m0	-	= 2.9	= 0.3	= 0.3
ColourReconnection:allowJunctions	-	= on	= on	= on
ColourReconnection:junctionCorrection	-	= 1.43	= 1.20	= 1.15
ColourReconnection:timeDilationMode	-	= 0	= 2	= 3
ColourReconnection:timeDilationPar	-	-	= 0.18	= 0.07

Original CR mode 2

J. Christiansen and P. Skands et. al., JHEP 08 (2015) 003.

Pseudorapidity density (CR mode 2)

η

- Figure 4.2 The original CR mode 2 differs the pseudorapidity density and multiplicity by 10%
- Figure Thus, we have tuned the CR mode 2 settings listed in the previous slide: CR mode 2 (modified)
- Provides good agreement with LHC data

Proton and anti-proton p_T spectra (CR mode 2)

With modified CR mode 2 for Tune 4, PYTHIA 8 successfully describes the pseudorapidity density and low- p_T proton spectra simultaneously

Event-by-event coalescence mechanisms

- Protons and neutrons are selected in loose rapidity $(-1,1) \rightarrow 1000$ over all protons and neutrons
- Final spectra obtained in rapidity range of (-0.5,0.5)
- Spin and Isospin factor: 1/2 * 3/4 = 3/8 (Phys. Rev. C 99, 014901 (2019))

Event-by-event coalescence

• The first tests are done for pp,13 TeV (MB) and pp, 900 GeV (MB) (10M events now, more event generation ongoing).

- Protons and neutrons are selected in loose rapidity $(-1,1) \rightarrow 100$ over all protons and neutrons
- Final spectra obtained in rapidity range of (-0.5,0.5)
- Spin and Isospin factor: 1/2 * 3/4 = 3/8 (Phys. Rev. C 99, 014901 (2019))

Simple Coalescence:

- No spatial correlations
- $|\overrightarrow{p_p} \overrightarrow{p_n}| < p_0$

$$B_2 = \frac{m_D}{m_p m_n} \frac{\pi p_0^3}{6}$$

• We implement p_{T} and collision energy dependence of p_0 (uncertainties are also propagated)

Simple Coalescence

• The first tests are done for pp,13 TeV (MB) and pp, 900 GeV (MB) (10M events now, more event generation ongoing).

- Protons and neutrons are selected in loose rapidity $(-1,1) \rightarrow 100$ over all protons and neutrons
- Final spectra obtained in rapidity range of (-0.5,0.5)
- Spin and Isospin factor: 1/2 * 3/4 = 3/8 (Phys. Rev. C 99, 014901 (2019))

Simple Coalescence:

- No spatial correlations
- $|\overrightarrow{p_p} \overrightarrow{p_n}| < p_0$

$$B_2 = \frac{m_D}{m_p m_n} \frac{\pi p_0^3}{6}$$

• We implement p_{T} and collision energy dependence of p_0 (uncertainties are also propagated)

Simple Coalescence

• The first tests are done for pp,13 TeV (MB) and pp, 900 GeV (MB) (10M events now, more event generation ongoing).

Simple Coalescence

Deuteron Wave function:

• Single Gaussian:

$$\varphi_{\rm d}(\mathbf{r}) = \left(\pi d^2\right)^{-3/4} \exp\{-\frac{r^2}{2d^2}\}$$

• Double Gaussian, $|\varphi_d(r)|^2$ fitted to Hulthen wave function:

$$\varphi_{\rm d}(\mathbf{r}) = \pi^{-3/4} \left[\frac{\Delta^{1/2}}{d_1^{3/2}} e^{-r^2/(2d_1^2)} + e^{i\alpha} \frac{(1-\Delta)^{1/2}}{d_2^{3/2}} + e^{-r^2/(2d_1^2)} + e^{i\alpha} \frac{(1$$

• Fit to $|\varphi_d(0)|^2$, <r>, and <r²> (φ_0 -fit): $\Delta = 0.581, d_1 = 3.979$ fm and $d_2 = 0.890$ fm

• Fit to < r >, 2> and 3> (r³-fit):

$$\Delta = 0.247$$
, $d_1 = 5.343$ fm and $d_2 = 1.810$ fm

Wigner approach

Kachelriess et. al., Eur. Phys. J. A (2020) 56:4

 10^{-} d = 3.2 fm 10^{-2} $\frac{\underline{a}}{\underline{b}}$ 10⁻³ $-r^2/(2d_2^2)$ 10^{-4} 10^{-5}

Deuteron Wave function

Kachelriess et. al., Eur. Phys. J. A (2020) 56:4

This work

Coalescence probability

• Single Gaussian:

$$w = 3\zeta e^{-q^2 d^2} \quad \zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2}$$

$$q = (\overrightarrow{p_n} - \overrightarrow{p_p})/2,$$

d = rms of deuteron radius (3.2 fm),

• Double Gaussian, $|\varphi_d(r)|^2$ fitted to Hulthen wave function:

$$w = 3\left(\zeta_1 \Delta e^{-q^2 d_1^2} + \zeta_2 [1 - \Delta] e^{-q^2 d_2^2}\right)$$

• Fit to
$$|\varphi_d(0)|^2$$
, , and 2> (φ_0 -fit):
 $\Delta = 0.581$, $d_1 = 3.979$ fm and $d_2 = 0.890$ fm

• Fit to < r >, and (r³-fit):

$$\Delta = 0.247$$
, $d_1 = 5.343$ fm and $d_2 = 1.810$ fm

Wigner approach

Kachelriess et. al., Eur. Phys. J. A (2020) 56:4

Source size:

- 1 fm fixed (for 900 GeV)
- r₀ vs. m_T from ALICE, PLB 811 (2020) 135849 (for 13 TeV)

Wigner approach

Backup

