
A. Costantini, SOSC - 2022

Organizing software and
actions: Argo Workflow

Alessandro Costantini

alessandro.costantini@cnaf.infn.it

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International license

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Summary

• Software&Actions: VCS

• Workflows

• CI/CD

• Working with VCS: Git
• Basic concepts

• CI/CD in GitLab

• GitHub Actions

• Argo

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Organizing SW and Actions

• Version control — also known as source control or revision control —
is an important software development practice for tracking and
managing changes made to code and other files. It is closely related
to source code management.

• With version control, every change made to the code is tracked. This
allows developers to see the entire history of who changed what at
any given time — and roll back to an earlier version if they need to.
• If developers code concurrently and create incompatible changes, version

control identifies the problem areas so that team members can quickly revert
changes to a previous version, compare changes, or identify who committed
the problem code through the revision history

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Benefits of version control

• Quality
Teams can review, comment, and improve each other’s code and assets.

• Acceleration
Branch code, make changes, and merge commits faster.

• Visibility
Understand and improve team collaboration to foster greater release build
and release patterns.

• A version control system (VCS) tracks changes to a file or set of files over time.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Version Control Systems

Git
open source distributed system that is used for software projects of any size, making it a
popular option for startups, enterprise, and everything in between.

Subversion
This system keeps all of a project's files on a single codeline making it impossible to branch,
so it's easy to scale for large projects. It's simple to learn and features folder security
measures, so access to subfolders can be restricted.

Mercurial

The system enables rapid scaling and collaborative development, with an intuitive
interface. The flexible command line interface enables users to begin using the system
immediately.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Version Control Systems

Git
open source distributed system that is used for software projects of any size, making it a
popular option for startups, enterprise, and everything in between.

Subversion
This system keeps all of a project's files on a single codeline making it impossible to branch,
so it's easy to scale for large projects. It's simple to learn and features folder security
measures, so access to subfolders can be restricted.

Mercurial

The system enables rapid scaling and collaborative development, with an intuitive
interface. The flexible command line interface enables users to begin using the system
immediately.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Git workflows

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Workflows

• A Workflow is defined as a sequence of tasks that processes a set of
data through a specific path from initiation to completion

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Workflow management

• Software that helps us to manage the documents and processes

• It helps us to…
• Automate the process

• Follow up on pending tasks

• Get the picture and the state of the workflow

• Manage the action

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

A bit about DAG Pipelines

• A directed acyclic graph (DAG) is a conceptual representation
of a series of activities.

• The order of the activities is depicted by a graph, which is
visually presented as a set of circles, each one representing
an activity, some of which are connected by lines, which
represent the flow from one activity to another.

• Each circle is known as a “vertex” and each line is known as
an “edge.”

• “Directed” means that each edge has a defined direction

• “Acyclic” means that there are no loops

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Why Are DAG Useful?

• DAGs are useful for representing many different types of flows
• Including data processing flows

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Why Are DAG Useful?

• Can be used in the context of a software organization pipeline
(CI/CD) to build relationships between jobs such that execution is
performed in the quickest possible manner, regardless how stages
may be set up.

A. Costantini, SOSC - 2022

CI/CD

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD

14

• CI/CD (continuous integration/continuous delivery) are the steps to be
executed to provide a new version of the software.

• A pipeline of CI/CD are procedure used to optimize software
provisioning through a DevOps o Site Reliability Engineering (SRE)
approach.

• The CI/CD flux introduce both monitoring and automation aimed to
optimize the process bringing to the development of the applications
• Integration phase
• testing
• distribution
• deployment

• The main advantage of the CI/CD is on the procedure automation

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

DevOps

15

• DevOps is a set of practices, tools, and a cultural philosophy that
automate and integrate the processes between software development
and IT teams.

• The DevOps movement began around 2007
• Traditional software development model

• Developers who wrote code worked apart from operations who deployed and
supported the code

• The term DevOps, a combination of the words development and
operations, reflects the process of integrating these disciplines into
one, continuous process.

https://www.atlassian.com/devops/what-is-devops/devops-best-practices
https://www.atlassian.com/devops/devops-tools/choose-devops-tools
https://www.atlassian.com/devops/what-is-devops/devops-culture
https://www.atlassian.com/devops/what-is-devops/history-of-devops

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

DevOps

16

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD Pipeline

17

• A CI/CD pipeline breaks down into distinct subsets of activities.
Typical pipeline stages include:
• Build: The build phase of the application.

• Test: The stage where the code is tested. Here automation can save
time and effort.

• Release: The stage where the application is pushed to the repository.

• Deployment: in this phase the software is deployed in production.

• Validation and compliance: the steps to validate a build required by
the needs of the organization.
• Software security scanning tools comparing it with known vulnerabilities (CVE).

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD Pipeline

18

CICI CD

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD Pipeline

19

• A CI/CD pipeline breaks down into distinct subsets of activities. Typical
pipeline stages include:

• Build: The build phase of the application.
• Test: The stage where the code is tested.

• Unit tests: elementary unit tests of the software
• Integration Testing: Testing the interaction between the most basic software
• Functional Test: test that given an input the Software (Backbox) provides the expected

output
• Release: The stage where the application is pushed to the repository.
• Deployment: in this phase the software is distributed in staging.

• Test: the phase in which the software is tested in execution.
• Deployment Testing: Software installation testing, for example on different platforms
• Load/Stress Test: Software load test

• Validation and Compliance:
• Acceptance test: validation of requirements
• Security test: comparison with known vulnerabilities (CVE).

• Deployment: the software is distributed in production
• Pre-production installation
• Smoke test
• Production installation

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD Pipeline

20

• A CI/CD pipeline breaks down into distinct subsets of activities. Typical
pipeline stages include:

• Build: The build phase of the application.
• Test: The stage where the code is tested.

• Unit tests: elementary unit tests of the software
• Integration Testing: Testing the interaction between the most basic software
• Functional Test: test that given an input the Software (Backbox) provides the expected

output
• Release: The stage where the application is pushed to the repository.
• Deployment: in this phase the software is distributed in staging.

• Test: the phase in which the software is tested in execution.
• Deployment Testing: Software installation testing, for example on different platforms
• Load/Stress Test: Software load test

• Validation and Compliance:
• Acceptance test: validation of requirements
• Security test: comparison with known vulnerabilities (CVE).

• Deployment: the software is distributed in production
• Pre-production installation
• Smoke test
• Production installation

The situation can be even more complicated

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Tools

21

• GitLab CI

• GitHub Actions

• Jenkins

• Travis CI

• Bamboo/Bitbucket Pipelines (Atlassian)

• …

A. Costantini, SOSC - 2022

Working whit Git(Lab)

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
23

• https://gitlab.com/users/sign_in

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
24

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
25

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
26

• https://gitlab.com/alexcos78/sosc-2022-demo.git

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
27

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
28

• https://gitlab.com/alexcos78/sosc-2022-demo

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
29

alexc@LAPTOP-590KG1CS MINGW64 ~
$ git --version
git version 2.38.0.windows.1

https://www.atlassian.com/git/glossary

Git has to be intalled in your platform

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
30

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ git clone https://gitlab.com/alexcos78/sosc-2022-demo-2.git
Cloning into 'sosc-2022-demo-2'...
remote: Enumerating objects: 168, done.
remote: Counting objects: 100% (168/168), done.
remote: Compressing objects: 100% (93/93), done.
remote: Total 168 (delta 37), reused 168 (delta 37), pack-reused 0
Receiving objects: 100% (168/168), 81.47 KiB | 6.27 MiB/s, done.
Resolving deltas: 100% (37/37), done.

https://www.atlassian.com/git/glossary

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
31

alexc@LAPTOP-590KG1CS MINGW64 ~
$ cd sosc-2022-demo-2/

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ ls -la
total 18
drwxr-xr-x 1 alexc 197609 0 Nov 28 10:38 ./
drwxr-xr-x 1 alexc 197609 0 Nov 28 10:38 ../
drwxr-xr-x 1 alexc 197609 0 Nov 28 10:38 .git/
-rw-r--r-- 1 alexc 197609 437 Nov 28 10:38 .gitlab-ci.yml
-rw-r--r-- 1 alexc 197609 36 Nov 28 10:38 README.md

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
32

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ git config --global user.email "alessandro.costantini@cnaf.infn.it"

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ git config --global user.name "Alessandro Costantini"

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
33

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ cat .git/config
…
[remote "origin"]

url = https://gitlab.com/alexcos78/sosc-2022-demo-2.git
fetch = +refs/heads/*:refs/remotes/origin/*

[branch "main"]
remote = origin
merge = refs/heads/main

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ git branch
* main

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
34

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ vim README.md

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ git status
On branch main
Your branch is up to date with 'origin/main'.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working

directory)
modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
35

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ git commit -a -m "Update readme"
[main ee48787] Update readme
1 file changed, 1 insertion(+)

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ git status
On branch main
Your branch is ahead of 'origin/main' by 1 commit.

(use "git push" to publish your local commits)

nothing to commit, working tree clean

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
36

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2 (main)
$ git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 329 bytes | 329.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To https://gitlab.com/alexcos78/sosc-2022-demo-2.git

4d8a263..ee48787 main -> main

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
37

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
38

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
39

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
40

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
41

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2
(main)
$ git fetch
From https://gitlab.com/alexcos78/sosc-2022-demo-2
* [new branch] developer -> origin/developer

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2
(main)
$ git branch -r

origin/HEAD -> origin/main
origin/alexcos78-main-patch-00052
origin/developer
origin/main

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
42

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2
(main)
$ git checkout developer
Switched to a new branch 'developer'
branch 'developer' set up to track 'origin/developer'.

alexc@LAPTOP-590KG1CS MINGW64 ~/sosc-2022-demo-2
(developer)
$ git branch
* developer
main

A. Costantini, SOSC - 2022

CI/CD in GitLab

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD in GitLab

44

• The CI/CD is integrated in GitLab and allows
software development according to the
methodologies

• Continuous Integration
• A developer has his repository in GitLab and

with each "push" on the repository, possibly also
for development branches, a series of scripts
starts that compile and test the application

• Continuous Delivery
• A step further than CI; the application is

released for the repository

• Continuous Deployment
• The application released is put into production

automatically without manual intervention

https://docs.gitlab.com/ee/ci/quick_start/index.html

https://docs.gitlab.com/ee/ci/quick_start/index.html

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD in GitLab

45

What is needed? A repository and a file.

The CI/CD is configured through a .gitlab-ci.yml file present in the root of the repository.

When pushed to the repository, the file executes a pipeline: a set of instructions that execute
jobs on a runner

The file .gitlab-ci.yml is a YAML file

• https://en.wikipedia.org/wiki/YAML

• https://yaml.org/

In this file, you define:

• The structure and order of jobs that the runner should execute.

• The decisions the runner should make when specific conditions are encountered.

https://en.wikipedia.org/wiki/YAML
https://yaml.org/

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD in GitLab

46

Pipeline: is the highest level component of the CI/CD

• Simple pipeline

• Complex pipeline
• https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab-ci.yml

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD in GitLab

47

• This example shows three jobs:

• build-job-example, test-job-example, t

deploy-job-example.

• The comments listed in the echo

commands are displayed in the UI when

you view the jobs.

• The values for the predefined variables

$GITLAB_USER_LOGIN and

$CI_COMMIT_BRANCH are populated

when the jobs run.

https://docs.gitlab.com/ee/ci/variables/predefined_variables.html

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD in GitLab

48

Stages

• Define the stage containig groups of job

• The order of the arguments defines the execution order
of the job

• Is globally defined

• If not defined, the default stage are build, test, deploy

Keywords stages & stage

Stage

• Defines the job executed in the stage

• If stages is not defined, there are 5 default stage (executed in
the order) .pre, build, test, deploy, .post

• To a job without stage is assingned the stage test

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD in GitLab

49

Pipeline

Besides the keywords to be used to "build" the pipeline, there are environmental
variables that are defined in the execution of the jobs and are useful for

• control the behavior of jobs and pipeline

• Assume a value to be used in the job

• avoid hard-coded values in the file .gitlab-ci.yml

• https://docs.gitlab.com/ee/ci/variables/predefined_variables.html

• define custom variables

• pipeline generating an
artifact (a product of the job)

The artifact is a pdf that will be
removed after a week
expire_in and it is in the folder
paths related to the repository
where the job is executed

https://docs.gitlab.com/ee/ci/variables/predefined_variables.html

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD in GitLab

50

There are many temlates available in the GUI for .gitlab-ci.yml

https://gitlab.com/gitlab-org/gitlab-foss/tree/master/lib/gitlab/ci/templates

From the GitLab editor, file can be modified

https://docs.gitlab.com/ee/ci/yaml/README.html#variables

Here you can:

Edit the pipeline

Visualize the pipeline

Verify the sintax

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD in GitLab

51

Who is executing the conde in .gitlab-ci.yml?

• the runner

• In GitLab runners can be used by presenting the
credit card

• In GitLab INFN there are shared runners, 16 runner
available for the users

https://docs.gitlab.com/ee/ci/quick_start/index.html#e
nsure-you-have-runners-available

The job is executed by one runner

In the dashboard can be seen the
execution time of each job

https://docs.gitlab.com/ee/ci/quick_start/index.html#ensure-you-have-runners-available

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

CI/CD in GitLab

52

Dashboard enable the control of CI (pipeline, job...)

A. Costantini, SOSC - 2022

GitHub Actions

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

GitHub Actions

• https://docs.github.com/en/actions

• Available since Nov. 13, 2019

• Implemented on Microsoft Azure Pipelines

• Tightly integrated with the GitHub API

• YAML-based configuration

• Modular architecture, community-driven

• Windows, Linux, MacOS, self hosted runners

• Free for public repositories

https://docs.github.com/en/actions

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

More than CI/CD?

• GH Actions provides tools to automate any task on your Github-
hosted repository

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
https://github.com/alexcos78/sosc-2022-demo/blob/main/.github/workflows/simple_build.yml

Name of the workflow

An example

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
https://github.com/alexcos78/sosc-2022-demo/blob/main/.github/workflows/simple_build.yml

Events that trigger the workflow

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
https://github.com/alexcos78/sosc-2022-demo/blob/main/.github/workflows/simple_build.yml

Workflow jobs

We have only one job in this workflow, the build job

Jobs
A job is a set of steps that execute in the same runner. By default, a
workflow with multiple jobs will run those jobs in parallel. You can
also configure a workflow to run job sequentially. For example, a
workflow can have two sequential jobs that buold and test code,
where the test job is dependent on the status of the buold job. If
the build job fails, the test job will not run.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
https://github.com/alexcos78/sosc-2022-demo/blob/main/.github/workflows/simple_build.yml

The job runs on an

ubuntu runner

https://docs.github.com/en/actions/using-github-hosted-
runners/about-github-hosted-runners

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
https://github.com/alexcos78/sosc-2022-demo/blob/main/.github/workflows/simple_build.yml

The steps that make up this build job

Steps

A step is an individual task that can run commands in a job.
A step can be either an action or a shell command.
Each step in a job executes on the same runner, allowing
actions in that job to share data with each other.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
https://github.com/alexcos78/sosc-2022-demo/blob/main/.github/workflows/simple_build.yml

The first step is the execution of the checkout action

Actions

Actions are standalone commands that are combined into
steps to crate a job.
Actions are the smallest portable building block of a
workflow.
You can create your own actions, or use actions created by
the CitHub community.
To use an action in a workflow, you must include it as a step

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022
https://github.com/alexcos78/sosc-2022-demo/blob/main/.github/workflows/simple_build.yml

The run keyword tells the job to execute a
command on the runner.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

https://github.com/actions
https://github.com/marketplace?type=actions

https://github.com/actions
https://github.com/marketplace?type=actions

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

https://github.com/alexcos78/sosc-2022-
demo/blob/main/.github/workflows/python-workflow.yml

This workflow will install Python dependencies, run lint
with a variety of Python versions

An (bit more complex) example

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

https://github.com/alexcos78/sosc-2022-
demo/blob/main/.github/workflows/python-workflow.yml

This workflow will install Python dependencies, run lint
with a variety of Python versions

An (bit more complex) example

We provide input parameters to
the action using the with keyword

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Workflow name

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Successful build

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Event filter

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Successful build
for this commit

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Triggers

A. Costantini, SOSC - 2022

Argo

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

What is Argo?

• Argoproj (or more commonly Argo) is a collection of open source
tools for Kubernetes to run workflows, manage clusters, and do
GitOps in Kubernetes.

• This includes Argo Workflows, Argo CD, Argo Events, and Argo
Rollouts.

• https://argoproj.github.io/

• https://github.com/argoproj

https://argoproj.github.io/
https://github.com/argoproj

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

What is Argo?

• Argo Workflows
• Kubernetes-native workflow engine supporting DAG and step-based

workflows

• Argo CD
• Declarative continuous delivery with a fully-loaded UI

• Argo Rollouts
• Advanced Kubernetes deployment strategies such as Canary and Blue-Green

made easy

• Argo Events
• Event based dependency management for Kubernetes.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Argo Workflows

• Argo Workflows is an open source container-native workflow engine for
orchestrating jobs on Kubernetes.

• Argo Workflows is implemented as a Kubernetes CRD (Custom Resource
Definition).
• A resource is an endpoint in the Kubernetes API that stores a collection of API

objects of a certain kind.
• Custom resources are extensions of the Kubernetes API. It represents a

customization of a particular Kubernetes installation.

• Create and run advanced workflows entirely on Kubernetes

• https://argoproj.github.io/argo-workflows/

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Argo Workflows

• Define workflows where each step in the workflow is a container.

• Model multi-step workflows as a sequence of tasks or capture the
dependencies between tasks using a directed acyclic graph (DAG).

• Easily run compute intensive jobs for machine learning or data
processing using Argo Workflows on Kubernetes.

• Run CI/CD pipelines natively on Kubernetes without configuring
complex software development products.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Main Features

• Fully featured UI

• Templating and composability

• Workflow archive

• Cron Workflows

• REST API

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

Main concepts in Argo

• Workflow
• the sequence of processes through which a piece of work passes from

initiation to completion

• Workflow template
• A workflow that is persisted on the cluster

• Can be submitted as a whole or referenced in part by other workflows or
workflows template

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

How Argo Works

• Argo adds a new object to Kubernetes called a
Workflow, that we can create and modify as any
other Kubernetes object (like a Pod or
Deployment). A Workflow is, in fancy speak, a
directed acyclic graph of “steps”.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

How Argo Works

With Argo, each “step” executes in a pod and can run in parallel with,
or as a dependency of, any number of other steps.

• Some of Argo's features include:
• parametrization and conditional execution

• passing artifacts between steps

• timeouts and retry logic

• recursion and flow control

• suspend, resume, and cancellation

• memoized resubmission

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

How Argo Works

• Why do we want to use Argo? Why not use another tool like Airflow,
or hack something up on our existing Jenkins cluster?

• Because Kubernetes!

• Argo doesn't reinvent what Kubernetes already provides. If we know
how to attach a volume to a pod, we know how to attach a volume to
a step in our workflow. The same applies to networking, environment
variables, resource requests/limits, service accounts, node/pod (anti-
)affinities, and everything else a pod can define.

• This is possible because Workflows use the same mechanism as
vanilla Kubernetes Deployments or DaemonSets. For example, they
use a pod template.

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/#pod-templates

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

A Simple Workflow

• That said, let's take a brief look at possibly the simplest workflow
object

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

A Simple Workflow

• This workflow is largely analogous to running the following command
locally:

• While this example isn't very exciting – fear not! Workflows can
quickly get complicated to suit our needs. There are several examples
of the features listed above in the official docs.

https://argoproj.github.io/argo/examples/

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

What Is Argo CD?

• Argo CD is a declarative, GitOps continuous delivery tool for
Kubernetes.

• Argo CD automates the
deployment of the desired
application states in the specified
target environments.

• Application deployments can
track updates to branches, tags,
or pinned to a specific version of
manifests at a Git commit.

• Argo CD follows the GitOps
pattern of using Git repositories
as the source of truth for defining
the desired application state.

A. Costantini, SOSC - 2022A. Costantini, SOSC - 2022

