
Introduction to Containers

SOSC22 – Perugia, 28/11/2022
Davide Salomoni (davide@infn.it)

mailto:davide@infn.it

Virtualization and Virtual Machines

• Informally, a Virtual Machine (or
VM for short) is a “virtual copy of
a real machine”.
• But what is “Virtualization” in

general?
• It is the creation of a virtual

version of something: an Operating
System, a storage device, a network
resource: pretty much almost
anything can be made virtual.

• This is done through an abstraction,
that hides and simplifies the details
underneath.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 2

Containers are «lightweight VMs»

Davide Salomoni SOSC22 - Perugia, 28/11/2022 3

Source: http://goo.gl/4jh8cX

http://goo.gl/4jh8cX

Davide Salomoni SOSC22 - Perugia, 28/11/2022 4

Davide Salomoni SOSC22 - Perugia, 28/11/2022 5

Intermodal Shipping Container
Ecosystem

Davide Salomoni SOSC22 - Perugia, 28/11/2022 6

Docker Containers

Davide Salomoni SOSC22 - Perugia, 28/11/2022 7

Containers in practice (1)
• Instead of installing multiple applications X1,X2,…,Xn on a system, you

just install the Docker application (or “Docker engine”).
• Applications X1,X2,…,Xn then come encapsulated in Docker images.

You don’t need to install anything else beyond the Docker engine to
run them. A Docker image, when downloaded and executed, creates
a container. This container “wraps” the application.
• Not only can you run different Docker images on your system at the

same time, but you can also have different instances of the same
application (same Docker image) running in different containers at
the same time.
• How many containers can you start on a system? Of course, it depends on

how powerful your system is, but as a rule many more than the number of
VMs you can run on the same system.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 8

Containers in practice (2)
• Without going into details, each container is “isolated” from other

containers. However, containers can optionally communicate among
them and with the outside world.
• If, for instance, you develop an application, you could distribute it

under the form of a Docker image and let everyone who has access to
a system with the Docker engine installed run it.
• Compare this with the traditional way of providing installation / deinstallation

procedures for Windows, MacOS and various flavors of Linux, making sure
that all the dependencies of your application are satisfied, etc.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 9

What are containers used for?

• Docker images have been created for many
purposes. For example, images can hold:
• Entire Linux distributions, such as Ubuntu,

Debian, CentOS, Arch Linux, Fedora, etc.
• Databases, such as MySQL, Redis, MongoDB,

PostgreSQL, etc.
• Applications, such as web servers, content

management software (e.g., Wordpress),
programming language environments (e.g.,
Python, C, C++, etc.), and tons of other stuff.
• Complete scientific environments for data science

(we will work with one of these here at SOSC22).

Davide Salomoni SOSC22 - Perugia, 28/11/2022 10Source: https://learn.g2.com/best-
docker-containers-repository

https://learn.g2.com/best-docker-containers-repository

Davide Salomoni SOSC22 - Perugia, 28/11/2022 11

Note that a Docker Engine must be
installed and running in the hosts

The first Docker commands
• By default, the “container

image registry” on the left is
the service running at
https://hub.docker.com
(called “Docker Hub”). It
stores more than 100,000
container images.
• To pull a Docker image from

Docker Hub, use the
command docker pull.
• To run a container, use the

command docker run.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 12

https://hub.docker.com/

Search, pull, run and push
• Try these commands on the SOSC22 systems that will be made

available to you:
• Search for a container image at Docker Hub:

• docker search ubuntu (or e.g. docker search rhel – what would this do?)
• Fetch (pull) a Docker image (in this case, an Ubuntu container):

• docker pull ubuntu
• Execute (run) a docker container:

• Run the “echo” command inside a container and then exit:
• docker run --rm ubuntu echo "hello from the container"
hello from the container

• Run a container in interactive mode:
• docker run --rm -i -t ubuntu /bin/bash

Davide Salomoni SOSC22 - Perugia, 28/11/2022 13

How efficient is Docker?

à the latest Ubuntu image takes about 78MB of disk space as a
container. If you had just to download a full Ubuntu (server)
distribution, it would be more in the range of the GB.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 14

à The total time it took on this system (not a very powerful one) to start a
container, execute a command inside it and exit from the container is less
than a second. How long would it take if we used a full VM?

An essential thing to know about
containers

• There are many things to learn about Docker containers, but it is important
to realize right from the start that

Docker containers are ephemeral!
• By this, we mean that if you start a container, and write some data into it

(for instance, in a folder visible only by the container), this data will
disappear when the container stops running. In other words, if you stop
the container and start it again, you will start from scratch, without the
data you had written to the previous container.
• This is by design! (let’s discuss the reason offline if you want)

• We will see ways to make data visible to containers permanent (or
“persistent”). But keep in mind that, as a rule, you should not expect a
container to store permanent data.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 15

Verify that containers are ephemeral

Davide Salomoni SOSC22 - Perugia, 28/11/2022 16

Start a Linux container interactively
List the files in the home directory

Create an empty file called test_file.txt
List the files in the home directory:
test_file.txt is present

Exit from the container
Start the same container again
List the files in the home directory:
test_file.txt is gone

How to extend a docker container (1)
• Suppose you need a command inside a container, that is not installed in the

image you pulled from Docker Hub. For example, you would like to use the
ping command but by default it’s not available:
• davide@iz4ugl-3:~$ docker run --rm ubuntu ping www.google.com
docker: Error response from daemon: failed to create shim task: OCI runtime
create failed: runc create failed: unable to start container process: exec:
"ping": executable file not found in $PATH: unknown.

• We can install it ourselves; it is in the package iputils-ping:
• davide@iz4ugl-3:~$ docker run --rm ubuntu /bin/bash -c "apt update; apt -y
install iputils-ping"

• But it still doesn’t work!?
• davide@iz4ugl-3:~$ docker run --rm ubuntu ping www.google.com
docker: Error response from daemon: failed to create shim task: OCI runtime
create failed: runc create failed: unable to start container process: exec:
"ping": executable file not found in $PATH: unknown.

• Who can explain this? The ping command was successfully installed!

Davide Salomoni SOSC22 - Perugia, 28/11/2022 17

http://www.google.com/
http://www.google.com/

How to extend a docker container (2)
• Whenever you issue a docker run <image> command, a new container is

started, based on the specified Docker image.
• If you modify a container (for instance, installing some software in it) and

then want to reuse it, you must “save the container”, creating a new
Docker image.
• So, install what you need to install (e.g., the iputils-ping package, using

the same command as before) , and then issue a commit command like
docker commit xxxx ubuntu_with_ping

• This commits a container locally, creating an image with the name
ubuntu_with_ping (you may give it any name you like). Take xxxx from
the container ID shown by the docker ps output (or docker ps -a if the
container is not running anymore).

Davide Salomoni SOSC22 - Perugia, 28/11/2022 18

How to extend a docker container (3)
• Verify that the ping command inside our new image now works:

• davide@iz4ugl-3:~$ docker run --rm ubuntu_with_ping ping -c 3 www.google.com
PING www.google.com (142.251.209.4) 56(84) bytes of data.
64 bytes from mil04s50-in-f4.1e100.net (142.251.209.4): icmp_seq=1 ttl=37 time=108 ms
64 bytes from mil04s50-in-f4.1e100.net (142.251.209.4): icmp_seq=2 ttl=37 time=34.7 ms
64 bytes from mil04s50-in-f4.1e100.net (142.251.209.4): icmp_seq=3 ttl=37 time=29.4 ms

--- www.google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2007ms
rtt min/avg/max/mdev = 29.352/57.305/107.855/35.810 ms

• To recap: we have an original image (called “ubuntu”), downloaded from
Docker Hub, and a new image (called “ubuntu_with_ping”), created by us
extending the “ubuntu” image (i.e. installing some packages). Let’s check:

• davide@iz4ugl-3:~$ docker images ubuntu*
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 9a6a648de422 2 minutes ago 119MB
ubuntu latest a8780b506fa4 3 weeks ago 77.8MB

Davide Salomoni SOSC22 - Perugia, 28/11/2022 19

http://www.google.com/

Cleaning up container space
• When you don’t need some containers anymore, it’s wise to check

and clean up some disk space. This is done with the docker system
commands.
• Check disk space used by containers with docker system df:

• ubuntu@VM1:~$ docker system df
TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 2 2 97.22MB 69.86MB (71%)
Containers 4 0 27.36MB 27.36MB (100%)
Local Volumes 0 0 0B 0B
Build Cache 0 0 0B 0B

• Reclaim disk space with docker system prune, then check again:
• ubuntu@VM1:~$ docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 2 0 97.22MB 97.22MB (100%)
Containers 0 0 0B 0B
Local Volumes 0 0 0B 0B
Build Cache 0 0 0B 0B

Davide Salomoni SOSC22 - Perugia, 28/11/2022 20

Removing unused images
• You can also remove images you don’t need anymore with docker rmi <image>:
ubuntu@VM1:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_ping latest 3e7a8818665f 29 minutes ago 97.2MB
ubuntu latest 7698f282e524 7 days ago 69.9MB

ubuntu@VM1:~$ docker rmi ubuntu_with_ping
Untagged: ubuntu_with_ping:latest
Deleted: sha256:3e7a8818665fc7eb1be20e8d633431ad8c0bdfba05d6d11d40edd32a915708bb
Deleted: sha256:a4c24b3590e4e95c30d4d0e82d3f769cde94436a5dd473b4e7ec7bd4682ce1b7

ubuntu@VM1:~$ docker rmi ubuntu
Untagged: ubuntu:latest
Untagged: ubuntu@sha256:f08638ec7ddc90065187e7eabdfac3c96e5ff0f6b2f1762cf31a4f49b53000a5
Deleted: sha256:7698f282e5242af2b9d2291458d4e425c75b25b0008c1e058d66b717b4c06fa9
Deleted: sha256:027b23fdf3957673017df55aa29d754121aee8a7ed5cc2898856f898e9220d2c
Deleted: sha256:0dfbdc7dee936a74958b05bc62776d5310abb129cfde4302b7bcdf0392561496
Deleted: sha256:02571d034293cb241c078d7ecbf7a84b83a5df2508f11a91de26ec38eb6122f1

ubuntu@VM1:~$ docker system df
TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 0 0 0B 0B
Containers 0 0 0B 0B
Local Volumes 0 0 0B 0B
Build Cache 0 0 0B 0B

Davide Salomoni SOSC22 - Perugia, 28/11/2022 21

Handling multiple commands

• If you want to apply several commands to a container (for example,
you want to install many applications), you could run the container in
interactive mode as shown earlier (use the “-i” switch), and then issue
the various commands at the prompt once you are in the container.
• For example, when you are running a container interactively, you could issue

a sequence of commands such as
apt update
apt install –y wget unzip
wget <some_file>
unzip <some_other file>

…

• Remember to commit the container, or your modifications to the
container will be lost (like in our “ping” example earlier).

Davide Salomoni SOSC22 - Perugia, 28/11/2022 22

Dockerfiles
• Rather than modifying a container “by hand”, connecting interactively,

installing packages and the committing the container as previously shown,
it is normally much more convenient to put all the required commands in
a text file (called by default Dockerfile), and then build an image executing
these commands.
• As an example, through the following Dockerfile we create an image

starting from an Ubuntu image, where we install a web server (through the
apache2 package) and tell the image to serve a simple html page
(index.html), which we copy from our system:

$ cat Dockerfile
FROM ubuntu
RUN apt update
RUN apt install -y apache2
COPY index.html /var/www/html/
EXPOSE 80
CMD ["apachectl", "-D", "FOREGROUND"]

Davide Salomoni SOSC22 - Perugia, 28/11/2022 23

This Dockerfile:
• Starts from the Ubuntu container
• Updates all installed packages
• Installs the apache2 web server
• Copies an index.html file from our system
• Exposes port 80 (the standard web port)
• Starts the apache2 web server through the

"apachectl" command

The index.html file

• This is the index.html file we used in the previous Dockerfile. It will just
show a greeting message:

• ubuntu@VM1:~$ cat index.html
<!DOCTYPE html>
<html>
<h1>Hello from a web server running inside a container!</h1>
This is an exercise for the SOSC22 course.
</html>

• Create both the previous Dockerfile and the index.html file on your
test machine.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 24

Build images via Dockerfiles
• Once we have a Dockerfile, we can create (”build”) an image and

name it for example “web_server” with the command
docker build –t web_server .

• Note: the . at the end the line above is important!

• We can now run our new container in the background (flag –d) simply
with
docker run --rm -d -p 8080:80 web_server

• The -p 8080:80 part redirects port 80 on the container (the port we
exposed in the Dockerfile) to port 8080 on the host system (that is,
VM1).
• Check that everything works opening in a browser the page

http://<test-system-ip-address>:8080/
Davide Salomoni SOSC22 - Perugia, 28/11/2022 25

http://localhost:8080/

Check that your web server is running

• Check with:
ubuntu@VM1:~$ docker ps
CONTAINER
ID IMAGE COMMAND CREATED STATUS PORT
S NAMES
f9dc164be001 web_server "apachectl -D FOREGR…" 12 minutes ago Up 12
minutes 0.0.0.0:8080->80/tcp laughing_pare

• Stop the container with:
ubuntu@VM1:~$ docker stop f9dc164be001

• You can now type docker run --rm -d -p 8080:80 web_server any
time you want to instantiate a new web server.
• What happens if you then type docker run --rm -d -p 8081:80
web_server ?

Davide Salomoni SOSC22 - Perugia, 28/11/2022 26

Connect a container to a host file
system

• Containers are ephemeral, but what if we want to persist data with
containers?
• We can map a directory that is available on the host (the system where

we run the docker commands), to a directory that is available on the
container. This is called a “bind mount”, and is done with the Docker
flag -v, like this:
docker run --rm -v /host/directory:/container/directory <other docker arguments>

• So, for example, to map a local directory called /local_data to the
directory /cointainer_data on the container:
docker run --rm -v /local_data/:/container_data -i -t ubuntu /bin/bash

• Now, when you are within the container, if you write ls
/container_data you should see what is in /local_data.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 27

Docker volumes (1)
• In the previous example, we mapped a directory that

was available on the host to a directory on the
container.
• But what if we want to copy or move our docker

container to a different host, with a different
directory structure? Or perhaps with a different
operating system? Remember that Docker wants to
be system-independent.
• We can (and should generally prefer to) use Docker

volumes.
• Docker volumes are persistent, but they are not tied

to the specific filesystem of the host. They are
completely managed by Docker itself.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 28

We’ll see what a tmpfs
mount is later on

Docker volumes (2)
• You can create a new Docker volume with the command

docker volume create some-volume
• Try these self-explanatory commands:
docker volume ls
docker volume inspect some-volume
docker volume rm some-volume

• You can also start a container with a volume which does not exist yet
with the -v flag. It will be automatically created:
docker run --rm -i -t --name myname -v some-volume2:/app ubuntu
/bin/bash
• Notice that we also introduced here the flag --name to give an explicit name

(here: myname) to a container.
• In this case, check the volume with the command docker inspect myname

and look for the Mounts section. Try it now: what do you see?
Davide Salomoni SOSC22 - Perugia, 28/11/2022 29

Removing docker volumes

• As we said, Docker volumes are directly managed by Docker, in some
Docker-specific area (see the docker inspect command we used
earlier to know more). They use up space in the local file system.
• When you do not need a docker volume anymore, it is wise to reclaim

its space:
docker volume rm <volume_name>

• Can you remove a volume which is being used by a container? Try.

• More in general, you can remove all unused docker volumes with
docker volume prune

• Note that the docker system prune command we showed previously does
not remove volumes!

Davide Salomoni SOSC22 - Perugia, 28/11/2022 30

tmpfs mounts
• If you are running Docker on Linux, there is a third option

to mount a volume on a container: the so-called tmpfs
mount option.
• When you create a container with a tmpfs mount, the

container can create files outside the container’s writable
layer, directly into the host system memory (RAM).
• This is a temporary volume, i.e., it will be automatically

removed once the container exits. It is useful for example if
you have sensitive data that you do not want to store
neither in the container nor in a dedicated area (be it a
bind mount or a Docker volume).
• An example of mounting the /app directory of a container

under a tmpfs mount (whatever you write in that directory
will only be stored in RAM):
docker run --rm -it --name mytmp --tmpfs /app ubuntu
/bin/bash

Davide Salomoni SOSC22 - Perugia, 28/11/2022 31

Hands-on: create your image
• A small assignment: take a Python program (any program you like)

and/or any software you want to install, and embed these things into
a Docker image, using a Dockerfile to build it.
• Verify that your new image works as expected using docker run.
• This is something you should do on your own.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 32

Detour: using the tar command
• In Linux, tar (for “tape archive”: this tells you how old this command is) is one of the most useful

commands to package several files or directories into a single file, often called tarball. It can be
combined with the gzip tool to also compress the archived file (with this option, it is similar to the
Windows zip and unzip tools).

• Typical extensions:
• .tarà uncompressed archive file using tar
• .zipà compressed archive file using zip
• .gzà file (it can be an archive or not) compressed using gzip
• .tar.gz or .tgzà a compressed archive file using tar

• Examples of some useful tar commands (see e.g. https://www.howtoforge.com/tutorial/linux-tar-
command/ for more information):
• Create an archive file called my_devstuff.tar with the directory /home/davide/devstuff/ and its content:

tar -cvf my_devstuff.tar /home/davide/devstuff/ # my_devstuff.tar will be created in the current directory
tar -xvf my_devstuff.tar # extract my_devstuff.tar in the current directory
tar -xvf my_devstuff.tar -C /home/davide/newdir # extract my_devstuff in another directory

• The same archive as above, but compressed:
tar -cvzf my_devstuff.tar.gz /home/davide/devstuff/ # note the z flag to enable compression
tar -xvf my_devstuff.tar.gz # note that the uncompress command is the same as above

• List the content of an archive file, compressed or not:
tar -tf <tar_filename>

Davide Salomoni SOSC22 - Perugia, 28/11/2022 33

https://www.howtoforge.com/tutorial/linux-tar-command/

Copy an image somewhere else
• So far, we have stored our images locally. But what if we wanted to

copy our images to another system?
• We could publish them to Docker Hub of course, and then retrieve them from

there. But what if we do not want to publish them on Docker Hub?

• Docker allows to export an image to a tar file specifying its name (you
could also compress it, if you wanted to save space):
docker save –o my_exported_image.tar my_local_image

• You can then copy the tar file (my_exported_image.tar) to another
system via e.g. scp, and then import it to a Docker image on that
system:
docker load –i my_exported_image.tar

Davide Salomoni SOSC22 - Perugia, 28/11/2022 34

Copy a Docker volume somewhere else
• Recall that Docker volumes are independent of the local file system structure and

are managed directly by the Docker engine.
• In order to transfer a Docker volume to another host, you must first back it up to a

tar file using the --volumes-from flag. This flag must be applied to an existing
container (even if not running) which mounted the volume you want to back up,
with a command similar to the following one:
docker run --rm --volumes-from EXISTING_CONTAINER -v /tmp:/backup ubuntu tar cvf
/backup/backup.tar /app
• This command backs up a volume that was mounted by the EXISTING_CONTAINER under the

directory /app into the file backup.tar in the /tmp directory of the local system.
• At this point, you can simply transfer the tar file to another machine and restore it to

another running container.
• For example, once you have the tar in the /tmp directory of another machine, you

can do:
docker run -it -v /app --name myname2 ubuntu /bin/bash (this runs myname2 interactively)
(in another shell) docker run --rm --volumes-from myname2 -v /tmp:/backup ubuntu bash -
c "cd /app && tar xvf /backup/backup.tar --strip 1"

Davide Salomoni SOSC22 - Perugia, 28/11/2022 35

Networking refresher
• You probably know that devices connect to the internet and to each

other via IP addresses.
• IP (Internet Protocol) is present on the internet today in two versions:

• IPv4, based on a 32 bits address space. 8 bits = 1 byte, i.e. the IPv4 address space has 4
bytes. When representing an IPv4 address, these 4 bytes are normally expressed in
decimal notation and separated by a dot. For example, 192.168.2.1 is an IPv4 address.
• How many addresses can we represent with 32 bits? That is 232 = 4,294,967,296 addresses

(~4.3 x 109). Out of these, some are reserved for special purposes, e.g. for private IP
addresses (~18M) or for multicast addresses (~270M).

• IPv6, based on a 128 bits address space, i.e. 16 bytes. An IPv6 address is typically
referred to in hexadecimal notation, with its 16 bytes separated two by two with a colon.
For example, 2001:0DB8:AC10:FE01:0000:0000:0000:0000 is an IPv6 address.
• How many addresses can we represent with 128 bits? That is 2128 ~ 3.4 x 1038 addresses. Like

in IPv4, some of these are reserved for special purposes.

• Today, we will only deal with IPv4 addresses, and will just say “IP
addresses” to mean IPv4 addresses.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 36

Networking in containers
• Containers isolate applications from other applications

and from a physical infrastructures.
• But typically, containers may also need to connect to

somewhere; for instance, to other containers, or in
general to the internet.
• How, and with which IP address?

• Remember that Docker containers live inside a host
(called “Docker host”). That host normally has one or
more IP addresses of its own, connected to a physical
or virtual network interface, used for instance by
applications running on the host.
• Docker containers, which are software appliances, use virtual

network interfaces to connect to the outside world.
• We will now see how.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 37

Docker Host

Container 2

ethernet interface 192.168.1.2

The world out there

?
App running
on the host

Container 1

?

Before we continue…
• In the hands-on exercises for this part, we will use the Alpine docker

image. It is a Docker official image for the Alpine Linux distribution
(https://www.alpinelinux.org/), a lightweight Linux distribution.

Compare:
ubuntu@VM1:~$ docker images alpine
REPOSITORY TAG IMAGE ID CREATED SIZE
alpine latest 6dbb9cc54074 4 weeks ago 5.61MB
ubuntu@VM1:~$ docker images ubuntu
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu latest 7e0aa2d69a15 3 weeks ago 72.7MB

• You may check the details of the interfaces on a Docker host or on a
container with the command ip address show.
• Warning: the command ip used in ip address show is not installed by default on

the Ubuntu docker image (it is however on the Alpine image). If on an Ubuntu
system the ip command is not installed, you can install it yourself with apt update
&& apt install -y iproute2 (iproute2 is the Ubuntu package containing the ip
command).

Davide Salomoni SOSC22 - Perugia, 28/11/2022 38

https://www.alpinelinux.org/

Check the network interfaces on the host
ubuntu@VM1:~$ ip address show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc fq_codel state UP group default qlen 1000

link/ether 0a:5f:ef:f0:e9:6f brd ff:ff:ff:ff:ff:ff

inet 172.31.17.119/20 brd 172.31.31.255 scope global dynamic eth0

valid_lft 2228sec preferred_lft 2228sec

inet6 fe80::85f:efff:fef0:e96f/64 scope link

valid_lft forever preferred_lft forever

3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default

link/ether 02:42:95:de:43:5e brd ff:ff:ff:ff:ff:ff

inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0

valid_lft forever preferred_lft forever

inet6 fe80::42:95ff:fede:435e/64 scope link

valid_lft forever preferred_lft forever

ubuntu@VM1:~$

Davide Salomoni SOSC22 - Perugia, 28/11/2022 39

eth0 is the interface
of the host

172.31.17.119 is the
IPv4 address of the host

fe80::85f:efff:fef0:e96f is the
IPv6 address of the host

Note this docker0 interface
(we’ll explain it later)

lo is the “loopback interface”
(we’ll ignore it here)

Check the network interface on a container

• Let’s log in into a container running the alpine image and check its
network interfaces:

Davide Salomoni SOSC22 - Perugia, 28/11/2022 40

ubuntu@VM1:~$ docker run --rm -it alpine sh
Unable to find image 'alpine:latest' locally
latest: Pulling from library/alpine
540db60ca938: Pull complete
Digest: sha256:69e70a79f2d41ab5d637de98c1e0b055206ba40a8145e7bddb55ccc04e13cf8f
Status: Downloaded newer image for alpine:latest
/ # ip address show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
12: eth0@if13: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue state UP

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0

valid_lft forever preferred_lft forever
/ # exit
ubuntu@VM1:~$

Run the alpine container in
interactive mode (-it)

The alpine image is not found on
the local system, so it will be
downloaded from DockerHub

This is the virtual ethernet
interface of the container

This is the IP address
of the container

Docker networking options

• There are several ways to handle networking with Docker containers.
We will discuss here the following:
• No networking.
• Bridge networking. This is the default if you don’t specify anything else.
• Host networking.
• Overlay networking.
• “Macvlan” networking.

• These options are selected using the flag
--network=<network_type>

in commands such as docker run.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 41

The --network=none option
• Sometimes you just don’t need or want to connect a Docker container

to the network.
• Maybe you just want to create a container and use it locally to your host to

run some jobs, and that’s it.
• On your test system, type
docker run --rm -it --network=none alpine sh
Once logged in, run ip address show. You will see that the container has no
ip addresses other than the loopback IP address (which is always 127.0.0.1).
• In this case, there is no way to connect to the container except than with

docker commands such as docker run or docker exec.
• Since there is no IP address on the container, no IP communications to/from

the container are possible.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 42

Bridge networking
• This is the default networking option for Docker. A “bridge” is a type of

network device making it possible to transfer packets between devices on
the same network segment.
• For example, if you have 2 laptops at home, you may connect them with each other

via a physical “bridge” (sometimes called also a “switch”). We won’t discuss here the
differences between bridges, switches and hubs.

• With Docker, we deal with virtual and not physical bridges. Docker always
creates a default bridge called in fact bridge. You can see it if you issue the
command docker network ls for instance on your test system:

NETWORK ID NAME DRIVER SCOPE
9b88500f1da1 bridge bridge local

320bf6394a48 host host local
a89c28f34f85 none null local

Davide Salomoni SOSC22 - Perugia, 28/11/2022 43

Multiple bridges (1)
• Containers connected to the

same bridge do communicate
with each other.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 44

Container 1 Container 2

Bridge A

• Let’s start two Alpine containers without specifying any --network
option. Open two separate ssh terminals on your test system and run
the following commands:
docker run --rm -it --name=test1 alpine sh
docker run --rm -it --name=test2 alpine sh

• Run ip address show eth0 on each container. You will see that both
have an IP address on the same network, something like 172.17.0.x.
• Are the two containers able to communicate with each other? Try!
• Both containers are connected to the same default bridge (called bridge).

Multiple bridges (2)
• Containers connected to

different bridges do not
communicate with each other.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 45

Container 1 Container 2 Container 3 Container 4

Bridge A Bridge B

• Now exit from the test1 container. Then create a second bridge on your test
system (called a user-defined bridge):
docker network create my-bridge

• List the bridges with docker network ls and confirm that my-bridge is
there.
• Create the test1 container again, but this time connect it directly to my-
bridge:
docker run --rm -it --network=my-bridge --name=test1 alpine sh

• Are the two containers still able to communicate with each other?
• One container is connected to the bridge bridge, the other to the bridge my-bridge.
• Check the IP address on test1 now.

X

Why create user-defined bridges then? (1)

• What could be the use of creating bridges other than the default
bridge, if containers attached to them are not able to communicate
with containers on other bridges?

Davide Salomoni SOSC22 - Perugia, 28/11/2022 46

Container 1 Container 2 Container 3 Container 4

Bridge A Bridge B

X

Why create user-defined bridges then? (2)

• What could be the use of creating bridges other than the default
bridge, if containers attached to them are not able to communicate
with containers on other bridges?
• Security! You can easily create many containers on a Docker host. You just

may not want to allow all of them to see each other.
• A container on a given bridge automatically sees all the ports of all the other

containers on the same bridge.
• How can you then make a certain port on a container available to containers attached to

other bridges?

Davide Salomoni SOSC22 - Perugia, 28/11/2022 47

Why create user-defined bridges then? (3)

• What could be the use of creating bridges other than the default
bridge, if containers attached to them are not able to communicate
with containers on other bridges?
• Containers on a bridge different from the default bridge have automatic

name resolution (DNS). Try this:
• On test2, issue the command ping test1. Does it work?
• Exit from test2, and connect it this time to my-bridge: docker run --rm -it --
network=my-bridge --name=test2 alpine sh

• Now, from test2, type ping test1 again. You will see that this time Docker
automatically resolves the name test1 to the actual IP address of test1.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 48

Connecting to multiple bridges
• You may also connect a container to more than one bridge. This is possible

with the docker network connect <bridge> <container> command
(note: not directly with the docker run command).
• Disconnect a container from a bridge with docker network disconnect
<bridge> <container>.
• Try it yourself with 3 or 4 containers, of which one is connected to two

bridges. What will happen in this case?

Davide Salomoni SOSC22 - Perugia, 28/11/2022 49

Container 1 Container 2

Container 3 Container 4

Bridge A

Bridge B

Inspecting bridges

• The configuration of a bridge can be shown with
docker network inspect <bridge>

• This will emit some JSON output with information such as the IP range
associated to the bridge and the containers (if any) connected to it.
• Try it out with docker network inspect my-bridge.
• A single-line, nerdy way of parsing the output of this command to show the

containers connected to a certain bridge:

docker network inspect my-bridge | python -c "import sys,
json; print([v['Name'] for k,v in
json.load(sys.stdin)[0]['Containers'].items()])"

Davide Salomoni SOSC22 - Perugia, 28/11/2022 50

What is my IP address?
• We have seen that containers connected to different bridges do not see each

other. But they can connect to the internet.
• Try it for yourself: from the test1 container connected to my-bridge, issue the

command ping www.google.com and verify that it works.
• Do the following on test1:
apk update && apk add bind-tools

This will install a utility called dig (for domain information groper, used to query
the DNS). Note that Alpine Linux uses the command apk (and not apt as in
Ubuntu) to install packages.
• Now with the command
dig +short myip.opendns.com @resolver1.opendns.com

you will see the real IP address that your test1 container uses to connect to the
internet. This is not the IP address shown by ip address show on test1!
• Where does this address come from?
Davide Salomoni SOSC22 - Perugia, 28/11/2022 51

http://www.google.com/

Network Address Translation (NAT)

• Our test1 container was able to ping the internet. However, it was
not able to ping another container instantiated on the same Docker
host but connected to a different bridge.
• We also just discovered that, when connecting to the internet, test1

uses an IP address that is not its own.
• This is because the Docker engine performs an automatic Network

Address Translation (NAT) when test1 wants to connect to the
outside world, transparently mapping the test1 IP address (the one
you see with ip address show) to the public IP address of the
Docker host.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 52

Recap of bridged networks

Davide Salomoni SOSC22 - Perugia, 28/11/2022 53

Source: https://www.youtube.com/watch?v=PpyPa92r44s

https://www.youtube.com/watch?v=PpyPa92r44s

Host networking
• We have seen the options --network=none and --network=bridge.
• Another option is host networking, specified with --network=host.

This connects a container directly to the Docker host network
interface and avoids using NAT (which could be useful for example for
performance purposes).
• The container does not get any IP addresses of its own and uses directly the

Docker host IP address.
• This means that port mapping does not make sense with host networking (the

container shares the same ports of the Docker host). It also means that you
cannot have two containers in host mode running a service on the same port.
• Host networking is used in special cases. We won’t discuss it more here.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 54

macvlan networking
• Another type of Docker networking is the so-called macvlan mode (it

has nothing to do with Apple Macs). With this mode, it is possible to
assign an individual MAC address (MAC = Media Access Control is a
unique identifier normally assigned to a physical network interface).
• A container in macvlan mode has its very own MAC address and IP address.

No NAT is used.
• The usage of this mode is also very specific and should be carefully

considered. Using macvlan, if you instantiate for example 100 containers on a
single Docker host, you will have 100 MAC addresses and 100 IP addresses to
allocate. This may easily lead to IP address exhaustion.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 55

The three main types of Docker networks
covered so far

Davide Salomoni SOSC22 - Perugia, 28/11/2022 56

bridge none host

docker0
172.17.0.1

Container 3
172.17.0.4

Container 4
172.17.0.4

Container 1
172.17.0.2

Container 2
172.17.0.3

docker run alpine

Docker Host Docker Host

Container

docker run alpine --network=none

Docker Host

docker run alpine --network=host

Container 1
port 5000

Container 2
port 5000

Overlay networks

• So far, we have considered network configurations that were
applicable to containers running on the same Docker host.
• Overlay networks connect Docker daemons running on multiple

hosts. Due to time constraints, we won’t discuss them here at
SOSC22.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 57

Container 1
172.17.0.2

Container 2
172.17.0.3

Docker Host

docker0
172.17.0.1

Container 1
172.17.0.2

Container 2
172.17.0.3

Docker Host

docker0
172.17.0.1

Container 1
172.17.0.2

Container 2
172.17.0.3

Docker Host

docker0
172.17.0.1

Overlay network
10.1.1.0

Container A Container B Container C

Process management
• Once you start a container, you may want to check how it is performing. For

example, what are the running processes, or how much CPU of the Docker host it is
using, how much RAM, etc. You can typically log in to the container and issue
commands there, but it is very useful to verify what containers are doing directly
from the Docker host.
• As an example, suppose we want to compute Pi using the Leibniz formula:

𝜋 =#
!"#

$
4(−1)!

2𝑖 + 1

• Let’s implement it with a simple Python program. Call it for example mypi.py:

pi = 0
accuracy = 1000000

for i in range(0, accuracy):
pi += ((4.0 * (-1)**i) / (2*i + 1))
print(pi)

Davide Salomoni SOSC22 - Perugia, 28/11/2022 58

Process management: docker top
• On your test system, create a container called test1 (in case you had

created a test1 container without specifying the docker option --rm,
remember to delete it first with docker rm test1):
docker run --rm -it --name=test1 alpine sh
• Install python on the test1 container:
apk update && apk add python3

• Now create the mypi.py program on the test1 container and run it with
python3 mypi.py. It will take some time to finish (the Leibniz formula is
not a very efficient way to compute Pi).
• Now open another terminal on your test system and type docker top
test1. You should see the running processes on test1, something like
this:

Davide Salomoni SOSC22 - Perugia, 28/11/2022 59

ubuntu@VM1:~$ docker top test1
UID PID PPID C STIME TTY TIME CMD
root 4300 4279 0 09:43 pts/0 00:00:00 sh
root 4441 4300 26 09:46 pts/0 00:00:05 python3 mypi.py
ubuntu@VM1:~$

Process management: docker stats

• While the mypi.py program is still running, type docker stats
test1 on VM1. It should output something like this:
CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
3fa7f0adb613 test1 42.50% 44.19MiB / 3.848GiB 1.12% 17MB / 194kB 0B / 0B 2

• The docker stats command displays a live stream of container
resource usage statistics. It is live, so it refreshes automatically.
Interrupt with Ctrl-C.
• This is quite useful in order to check that a container is doing what it

is supposed to do, but how can we limit the resources available to a
container?

Davide Salomoni SOSC22 - Perugia, 28/11/2022 60

This is the percentage of the Docker host’s CPU and memory the container is using

Why limit resources for containers

• By default, a container has no resource constraints and can therefore
use the resources on the Docker host as much as it is allowed by the
Docker host kernel scheduler.
• For example, if you do not limit the memory that a container can use,

the Docker host could run out of memory and throw an Out of
Memory exception. When this happens, the kernel starts killing
processes to free up memory. The problem is that you don’t know in
advance which processes the kernel is going to kill.
• In practice, if a Docker host runs out of memory, for example because

of a container misbehaving, the entire system could crash (that is, all
the other processes or containers running on the host will crash).

Davide Salomoni SOSC22 - Perugia, 28/11/2022 61

Some ways to limit resources for
containers

• Check first with docker stats what your container is doing with
resources.
• You can then limit for instance memory to 256MB for a container

running the nginx image with
docker run --rm -d -p 8080:80 --memory="256m" nginx

• Similarly, you can limit the number of CPU cores that a container is
allowed to use with
docker run --rm -d -p 8080:80 --cpus=".5" nginx
This will limit the container to use up to half a CPU core.
• More information on this topic can be found at

https://docs.docker.com/config/containers/resource_constraints/

Davide Salomoni SOSC22 - Perugia, 28/11/2022 62

https://docs.docker.com/config/containers/resource_constraints/

Logging container behavior
• Especially when a container is running in the background and you are not

able to check its behavior interactively from within the container, it is very
useful to checks what it is writing to STDOUT and STDERR.
• For example, suppose we run the following command on VM1:
docker run --rm -d --name test1 alpine /bin/sh -c "while
true; do $(echo date); sleep 1; done"

• This creates the test1 container using the Alpine image, running it in
background (-d) and executing an infinite loop printing the current date to
the standard output (echo date) every second.
• The container is running in the background, but you may check what it is

printing with the command docker logs --follow test1. Try it out.
• You may limit logs output to e.g. the last 10 lines with docker logs --tail 10
test1

• Once done, stop the test1 container running in the background with
docker stop test1

Davide Salomoni SOSC22 - Perugia, 28/11/2022 63

Application stacks: docker-compose
• We have seen how easy it is to create and run a Docker container,

pulling images from Docker Hub. We then learned how to extend an
image, either manually, adding packages to it (and then committing
the changes), or writing a Dockerfile to automatize the process. We
now also know how to export an image to a tar file, for example
because we want to share it without using Docker Hub, or to save it
for backup purposes.
• We will now move on to consider how to create “application stacks”:

that is, how to create multiple containers linked together to provide a
multi-container service, all on a single VM.
• This is done via the docker-compose command.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 64

A scenario for docker-compose
• docker-compose works by parsing a text file, written in the YAML

language (see https://yaml.org for more info). This file, which is
normally called docker-compose.yml, defines how our application
stack is structured.
• We will now use docker-compose to create and launch an

application stack made of two connected containers, both running on
your test system:

1. A MySQL database. It won’t be accessible from the Internet.
2. A WordPress instance. It will be accessible from the Internet. WordPress

(https://wordpress.org) is a very popular (open source) software used to
create websites or blogs.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 65

https://yaml.org/
https://wordpress.org/

Our app stack architecture

Davide Salomoni SOSC22 - Perugia, 28/11/2022 66

App-specific
private network

(backend)

Database for
WordPressWordPress

Web server
Internet

VM1

App-specific
public network

(frontend)

version: '3'

services:

database:

image: mysql:8.0

environment:

- MYSQL_USER=wordpress

- MYSQL_PASSWORD=testbdp2

- MYSQL_DATABASE=wordpress

- MYSQL_RANDOM_ROOT_PASSWORD=true

networks:

- backend

wordpress:

image: wordpress:6.1.1

depends_on:

- database

environment:

- WORDPRESS_DB_HOST=database

- WORDPRESS_DB_USER=wordpress

- WORDPRESS_DB_PASSWORD=testbdp2

ports:

- 8080:80

networks:

- backend

- frontend

networks:

backend:

frontend:

Davide Salomoni SOSC22 - Perugia, 28/11/2022 67

docker-compose.yml
This builds the container for the database,

with only the “backend” network

This builds the container for WordPress,
with both the “backend” and “frontend” networks

Port 8080 on the host is
mapped to port 80 on the

container

“Obvious” note: although this is just for a demo,
do not use the passwords shown in this screen!

Note that here we refer
to the other containerContainer image for mySQL

(from Docker Hub)

Container image for WordPress
(from Docker Hub)

Configuration variables
for the container software

Build & run the application stack
• Build the application stack:

docker-compose up –-build –-no-start

• Now start it:
docker-compose start

• If you now open a browser pointing to the public
address of the test system on port 8080 (look at the
previous docker-compose.yml), you should get the
set-up page for WordPress shown on the right. Go on
and set it up.
• Once WordPress is set up, you should see the default

WordPress home page, like the one on the right
(which of course you can graphically customize).
• Once the app stack is started, the running containers

can be seen with the usual docker ps command.
• The application stack can be stopped with:

docker-compose stop

Davide Salomoni SOSC22 - Perugia, 28/11/2022 68

Specifying volumes in docker-compose
• If you wish to use docker volumes, they can also be specified in the
docker-compose YAML file. For example:
version: '3'
volumes:

my_volume_1:
my_volume_2:

services:
application_1:

volumes:
- my_volume_1:/app1/dir

[…]
application_2:

volumes:
- my_volume_2:/app2/dir

[…]

Davide Salomoni SOSC22 - Perugia, 28/11/2022 69

This automatically creates the Docker volume
my_volume_1, mapping it to the directory

/app1/dir on the container

Limitations of docker-compose

• As seen, docker-compose is very handy to create combinations of
containers running on the same machine (your test system).
• It is best suitable if you don’t need automatic scaling of resources or

multi-server environments.
• For complex set ups, other tools such as Docker Swarm or Kubernetes

are more appropriate. This part deserves substantial time of its own,
and we won’t cover it here.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 70

Some best practices for creating
containers

1. Put a single application per container. For example, do
not run an application and a database used by the
application in the same container.

2. Explicitly define the entry point in the container with the
CMD command in the Dockerfile.

3. If in a Dockerfile you have commands that change often,
put them at the bottom of the Dockerfile. This way, you
speed up the process of building the image out of the
Dockerfile.

4. Keep it small: use the smallest base image possible,
remove unnecessary tools, install only what is needed.

5. Properly tag your images, so that it is clear which version
of a software it refers to.

6. Do you really want / can you use a public image? Think
about possible vulnerabilities, but also about potential
license issues.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 71

More (and more detailed) information available at
https://bit.ly/2Zr6Hyq

https://bit.ly/2Zr6Hyq

A few words on Docker security (1)
• As seen so far, if you want to run Docker containers, you need to have Docker

installed on your host system.
• If Docker is not installed, you can install it yourself, but you must have root

access.
• A largely Docker-compatible tool which does not require root access for the installation is
udocker (https://github.com/indigo-dc/udocker). Feel free to explore its use on your own.

• Once you have installed Docker, you can download and execute containers from
DockerHub or other sources.
• Careful, because this is a potentially big security threat: some containers that you download

might be compromised (and include for example viruses or trojans)!
• How can you send passwords, certificates, encryption keys, etc. to tasks /

applications in a Docker swarm cluster? Do not embed them into the containers,
and do not store them for instance in GitHub repositories!
• Docker has a “Secrets Management” feature, which is a standardized interface for accessing

secrets. See https://dockr.ly/2H4M5SU for details.
• Other resource orchestrations, such as Kubernetes, have similar solutions.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 72

https://github.com/indigo-dc/udocker
https://dockr.ly/2H4M5SU

A few words on Docker security (2)
• If the host where the Docker daemon is running gets compromised,

container isolation is gone. So, it is important to make sure that the Docker
host system is properly secured (that is, you should regularly update it!).
• On other hand, there could be exploits that make it possible for containers

to bypass isolation (remember that the Docker daemon requires root
privileges) and get access in privileged mode to the host system.
• Since you can so easily start up containers on a system, there is the

possibility of a Denial-of-Service attack, targeting to consume all resources
on the host system.
• Do not assume that containers are immutable! They might contain

outdated software, that must be periodically patched and upgraded.
• For more details, see http://bit.ly/2kEpV16.

Davide Salomoni SOSC22 - Perugia, 28/11/2022 73

http://bit.ly/2kEpV16

Recap of Containers
• We covered the basic concepts about Containers, comparing them to Virtual

Machines.
• We saw how to run a container out of a Docker image, list Docker images

and extend them to create new images.
• We then saw how to simplify image building via Dockerfiles.
• We created a container serving web pages; we then connected containers to

external file systems, to volumes and to tmpfs mounts. We also learned how
to export and import containers.
• We studied also how to combine multiple containers in an application stack

with docker-compose.
• We then reviewed some best practices in creating containers, and discussed

some Docker limitations, in particular for what regards security.
• It is now your time to practice what was discussed through hands-on, using

the test systems that are provided to you in SOSC22.
Davide Salomoni SOSC22 - Perugia, 28/11/2022 74

