

Investigation of wave function properties Maxi Horst

The deuteron wave function

Overview

There are several possible wave functions for the deuteron

- Simplistic:
 Single Gaussian
- Experimental data ('50s):
 Double Gaussian
- From *pion field theory* ('50s): Hulthén (important note later!)
- From modern χ_{EFT} : Argonne v_{18}

The deuteron wave function Calculation of properties

٦Π

Since the deuteron is a mixture of S- and D-State one can express the wavefunction

1 /0

$$\phi_{\rm d}(\vec{r}) = \frac{1}{\sqrt{4\pi}r} \left[u(r) + \frac{1}{\sqrt{8}} w(r) S_{12}(\hat{r}) \right] \chi_{1m} \qquad u(r) = \text{S-Wave, } w(r) = \text{D-Wave} \\ S_{12} = \text{Spin tensor, } \chi_{1m} = \text{Spinor}$$

The most important observables for the wavefunction are

The deuteron wave function

Problems with Hulthén

• When calculating the deuteron size we realized that the Hulthén give r_d~52 fm

$$N \cdot (e^{-lpha r} - e^{-eta r})$$

The deuteron wave function

Problems with Hulthén

$$\phi_{\rm d}(\vec{r}) = \frac{1}{\sqrt{4\pi}r} \left[u(r) + \frac{1}{\sqrt{8}} w(r) S_{12}(\hat{r}) \right] \chi_{1m} \qquad u(r) = \text{S-Wave, } w(r) = \text{D-Wave} \\ S_{12} = \text{Spin tensor, } \chi_{1m} = \text{Spinor}$$

- The wave function we have been using is **not** φ(r) but u(r)
 (= harmonic oscillator wave function to the Hulthén potential)
- The wave function used in Scheibl & Heinz and Kachelrieß et al. is the actual deuteron wave function

$$\varphi_d(r) = \sqrt{\frac{ab(a+b)}{2\pi(a-b)^2}} \frac{e^{-ar} - e^{-br}}{r}$$

Properties of wavefunctions

ТЛП

• For the Gaussian and Double Gaussian we can only calculate the size since we only have the S-Wave (magnetic moment no D-Wave contribution $\mu_d = \mu_p + \mu_n$)

	Radius r _d [fm]	Quadrupole moment Q _d [fm ²]	Magnetic moment μ_{d} [μ_{N}]
Gaussian	1.9595	_	(0.88)
Double Gaussian	1.9311	_	(0.88)
χEFT	1.954	0.2681	0.847177
Hulthén	1.9809	0.292166	0.84706
Experiment	1.97535(85)	0.2859(3)	0.85744

ТΠ

- Our predictions using the "Hulthén" wave function (without 1/r) are not usable
- Bhawani will calculate the Wigner function for the real Hulthén and also take another look at $\chi_{\rm EFT}$ since the way we did it had some flaws (Fitting before doing the integration)
- That way we will have predictions for 4 wave functions
- We can at least compare the same wave functions as there are in the B₂ predictions and see if they are equal to the MC predictions

To-do list

• Me:

- Start implementing the new source model into EPOS
- Use new fit to protons to produce new spectra (100M statistics has finally finished!)
- Add deuterons to the antideuteron spectra
- Sushanta:
 - Run more Pythia events (if not done yet)
 - Implement HM trigger
 - Make a plot with the multiplicity distribution of Pythia (before and after HM trigger)

Backup

 $\phi_{\rm d}(r) = \frac{e^{-\frac{1}{2d^2}}}{(\pi d^2)^{3/4}},$ d=3.2 fm $\phi_{\rm d}(r) = \pi^{-3/4} \left[\frac{\Delta^{1/2}}{d_{\rm s}^{3/2}} e^{-r^2/(2d_1^2)} + e^{i\alpha} \frac{(1-\Delta)^{1/2}}{d_{\rm s}^{3/2}} e^{-r^2/(2d_2^2)} \right] \quad \text{d}1=3.979 \text{ fm, d}2=0.89, \Delta=0.581$ $u(r) = \mathbf{N} \cdot (\mathbf{e}^{-\alpha r} - \mathbf{e}^{-\beta r})$ $W(r) = N \cdot \eta (1 - e^{-\tau r})^5 \cdot e^{-\alpha r} \cdot \left(1 + \frac{3}{\alpha r} + \frac{3}{\alpha^2 r^2}\right)$ $u(r) = r^{3/2} \sum_{i=1}^{N} A_i \exp(-a_i r^3)$ $w(r) = r \sum_{i=1}^{N} B_i \exp(-b_i r^3).$

$$\alpha = 0.2316 \text{ fm}^{-1}, \beta = 1.61 \text{ fm}^{-1}, \tau = 1, \eta = 0.026$$

i	A_i	a_i	B_i	b_i
1	-2.31737065809	0.35274596179	-0.16442140495	4.27551981801
2	0.02659110800	0.00732058085	0.02868983216	0.02949360502
3	-0.28877337807	5.38000986025	0.00074392415	0.00062004296
4	0.99922786191	0.36067988379	0.05707754763	0.09089766773
5	0.11094070754	0.06921749879	0.01167238661	0.00953758791
6	0.01077521733	0.00225041184	0.00370587438	0.00281824630
7	0.00274077964	0.00052965934	0.08509685731	0.30274669392
8	0.65409540449	0.26723780768		
9	0.99185931871	0.41270669565		
10	0.05693893648	0.02247865903		

Argonne V₁₈ Fit Parameters

N	u(r)	w(r)	
3	2.24E-05	4.46E-06	
4	3.26E-06	3.58E-06	
5	6.45E-07	3.58E-06	
6	4.27E-07	3.58E-06	
7	4.24E-07	4.30E-07	
8	4.25E-07	4.31E-07	
9	4.10E-07	4.32E-07	
10	4.03E-07	4.32E-07	
11	4.04E-07	4.31E-07	

8	A_i	a_i	B_i	b_i
	-2.31737065809	0.35274596179	-0.16442140495	4.27551981801
2	0.02659110800	0.00732058085	0.02868983216	0.02949360502
3	-0.28877337807	5.38000986025	0.00074392415	0.00062004296
1	0.99922786191	0.36067988379	0.05707754763	0.09089766773
5	0.11094070754	0.06921749879	0.01167238661	0.00953758791
3	0.01077521733	0.00225041184	0.00370587438	0.00281824630
7	0.00274077964	0.00052965934	0.08509685731	0.30274669392
3	0.65409540449	0.26723780768		
)	0.99185931871	0.41270669565		
10	0.05693893648	0.02247865903		

χ^2 /ndf for N parameters

Deuteron size:

https://journals-aps-org.eaccess.ub.tum.de/prl/pdf/10.1103/PhysRevLett.80.468

Quadrupole moment:

https://www.sciencedirect.com/science/article/abs/pii/037594748390516X

Magnetic moment:

https://physics.nist.gov/cgi-bin/cuu/Value?mudsmun (CODATA)