Modeling of the nonlinear dynamics of Josephson Traveling-Wave Parametric Amplifiers

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

DR. C. GUARCELLO

PHYSICS DEPARTMENT "E.R. CAIANIELLO", UNIVERSITY OF SALERNO, FISCIANO (SA), ITALY

cQED@Tn - "Circuit QED: From Quantum Devices to Analogues on Superconducting Circuits" Oct 3 – 5, 2022 FBK (Trento, Italy)

C. Guarcello, G. Avallone, C. Barone, M. Borghesi, S. Capelli, G. Carapella, A.P. Caricato, I. Carusotto, A. Cian, D. Di Gioacchino, E. Enrico, P. Falferi, L. Fasolo, M. Faverzani, E. Ferri, G. Filatrella, C. Gatti, A. Giachero, D. Giubertoni, V. Granata, A. Greco, D. Labranca, A. Leo, C. Ligi, G. Maccarrone, F. Mantegazzini, B. Margesin, G. Maruccio, C. Mauro, R. Mezzena, A.G. Monteduro, A. Nucciotti, L. Oberto, L. Origo, S. Pagano, V. Pierro, L. Piersanti, M. Rajteri, A. Rettaroli, S. Rizzato, A. Vinante, and M. Zannoni

Josephson Traveling-Wave Parametric Amplifiers (JTWPA)

A weak signal traveling in a metamaterial can interact with a strong pump tone at a different frequency, activating the so-called **parametric amplification**.

Figure 1.

(a) Sketch of a swing process. An oscillating system at a frequency ω_s is excited by parametric amplification via periodical changes of the center of mass position at a frequency $\omega_p = 2\omega_s$. (b) LC circuit with variable (nonlinear) C and L components. The case in which the capacitance C is periodically changed in time is the circuit analogous to the mechanical system represented in (a), while the case having an oscillating inductance L mimics the condition sketched in (c), consisting in a torque pendulum with variable inertia momentum [18].

parametric amplifiers (JTWPA)						
knowr	n as	los	sephson	trav	eling	-wave
phenomena		are	promoted	is	com	monly
The	class	of	devices	whe	ere	these

L. Fasolo, et al. "Superconducting josephson-based metamaterials for quantum-limited parametric amplification: A review." Adv. Condensed-Matter Materials Physics–Rudimentary Res. Topical Technol.. IntechOpen, 2019.

Layout of a TWJPA Chip TWJPA_X52

Layout of a the **Traveling Wave Josephson Parametric Amplifiers (TWJPA)** Chip TWJPA_X52 (size 10x10 mm2) based on a sequence of 990 elementary cells each formed by an RF-SQUID in series and an interdigital capacitor to ground.

S. Pagano et al., "Development of Quantum Limited Superconducting Amplifiers for Advanced Detection," in IEEE Transactions on Applied Superconductivity, **32**, 4, 1-5 (2022)

State of the art: the theoretical model

The TWJPA is a series of current-biased JJs with an input voltage control, used to amplify a weak signal.

$$V_{n+1} - V_n = -\frac{d\Phi_n}{d\tilde{t}} \qquad I_{L,n} = I_J \sin\left(\frac{\Phi_n}{\varphi_0}\right) \qquad \frac{dI_{L,n}}{dt} = \frac{I_J}{\varphi_0} \cos\left(\frac{\Phi_n}{\varphi_0}\right) \frac{d\Phi_n}{d\tilde{t}}$$
$$\frac{d\Phi_n}{d\tilde{t}} = \frac{\varphi_0}{I_J} \left[1 - \sin^2\left(\frac{\Phi_n}{\varphi_0}\right)\right]^{-\frac{1}{2}} \frac{dI_{L,n}}{dt} \qquad \frac{d\Phi_n}{d\tilde{t}} = \frac{\varphi_0}{I_J} \left[1 - \left(\frac{I_{L,n}}{I_J}\right)\right]^{-\frac{1}{2}} \frac{dI_{L,n}}{dt}$$
For a weak nonlinearity, $I_{L,n} \ll I_J$:
$$\frac{d\Phi_n}{d\tilde{t}} = \frac{\varphi_0}{I_J} \left[1 + \frac{1}{2} \left(\frac{I_{L,n}}{I_J}\right)^2\right] \frac{dI_{L,n}}{dt}$$

from which, expanding further the nonlinear term, one obtain

The usual strategy is to seek a solution for the obtained "weakly nonlinear wave equation" as a superposition of three waves (pump, signal, and idler)

$$\tilde{\varphi}(x,t) = \left[\tilde{A}_p(x)e^{i\psi_p} + \tilde{A}_s(x)e^{i\psi_s} + \tilde{A}_i(x)e^{i\psi_i} + \text{c. c. }\right]/2$$

Here, the first 3 terms describe weakly dispersive linear waves with spatially dependent phase velocity, while the 4th and 5th terms represent the nonlinearity and dissipation.

It is the **combination of the weak dispersion and cubic nonlinearity** which allows efficient parametric amplification via the **four-wave mixing (4WM)** process.

Yaakoby, et al., PRB 87, 144301 (2013)

State of the art: the amplification mechanisms

Two different operative modes:

Zorin showed that by embedding a chain of rf-SQUIDs into a coplanar waveguide, it is possible to tune both the 2nd and 3rd order nonlinearities of their CPR. This is a novel approach to the TWJPA, for the possibility to use a **quadratic term** as a source of nonlinearity allows to work in the so called **3-Wave Mixing (3WM)** regime.

Zorin, PRAppl. 6, 034006 (2016) Zorin, PRAppl. 12, 044051 (2019)

Yaakoby, et al., PRB 87, 144301 (2013)

State of the art: the amplification mechanisms

Two different operative modes:

Zorin, PRAppl. 6, 034006 (2016) Zorin, PRAppl. 12, 044051 (2019) Yaakoby, et al., PRB 87, 144301 (2013)

The Resistively Capacitance Shunted Junction (RCSJ) model

 $|I_b| > I_c$

finite voltage state

 $\varphi(t)$ evolves in time – dynamic state of the JJ

The total current is composed by

 $I_{I} >$ Josephson «dissipationless» channel

At T > 0, there is a finite probability for Cooper pairs to be broken up by thermal excitation thereby generating unpaired "normal" electrons (i.e., quasiparticles). If $V \neq 0$, these normal electrons contribute to the current. In contrast to the Josephson current, this normal current channel is resistive.

 I_{C_J} > Capacitive channel

An SIS tunnel JJ just represents a parallel plate capacitor. In the presence of $V(t) \neq 0$ we have a finite displacement current across this capacitor.

 $I_f > Noise contribution$

A temperature-dependent fluctuating current contribution

 $R_i = 50 \Omega$ $C_i = 24 \text{ fF}$ $R_\ell = 50 \Omega$ $C_\ell = 1 \text{ nF}$

 $C_n = 24 ext{ fF}$ $L_n = 120 ext{ pH}$

The TWJPA: the design and the modelling 11 $\begin{vmatrix} a_{1,2} & a_{1,3} & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & a_{N-1,1} & a_{N-1,2} & a_{N-1,3} \\ 0 & \dots & 0 & a_{N,1} & a_{N,2} \end{vmatrix} \begin{vmatrix} \varphi_1^{m+1} \\ \varphi_2^{m+1} \\ \vdots \\ \varphi_N^{m+1} \\ \varphi_N^{m+1} \end{vmatrix} = \begin{vmatrix} A_1 \\ A_2 \\ \vdots \\ A_{N-1} \\ A_N \end{vmatrix}$ $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$ $A_n = b_{n,1}f_{n-1}^m + b_{n,2}\widetilde{f}_n^m + b_{n,3}f_{n+1}^m + c_{n,1}\varphi_{n-1}^{m-1} + c_{n,2}\varphi_n^{m-1} + c_{n,3}\varphi_{n+1}^{m-1}$ for n = 1, ..., N, m = 1, 2, ..., M, $A_{1} = b_{1,1}I_{i}^{m} + b_{1,2}f_{1}^{m} + b_{1,3}f_{2}^{m} + c_{1,2}\varphi_{1}^{m-1} + c_{1,3}\varphi_{2}^{m-1} + C_{1}^{-}I_{b}$ for n = 0, m = 1, 2, ...M, $A_N = b_{N,1} f_{N-1}^m + b_{N,2} f_N^m + b_{n,3} I_\ell^m + c_{N,1} \varphi_{N-1}^{m-1} + c_{N,2} \varphi_N^{m-1} + I_b.$ for n = N, $m = 1, 2, \dots M$. $I_{i}^{m+1} = I_{i}^{m-1} + \left[\varphi_{1}^{m+1}\alpha_{1}^{+} - I_{i}^{m} + f_{1}^{m} + \varphi_{1}^{m-1}\alpha_{1}^{-} + \left(C_{i}\dot{V}_{i}^{m} - I_{b}\right)\right](2k\omega_{i})$ $I_{\ell}^{m+1} = I_{\ell}^{m-1} + \left[f_{N}^{m} - \left(1 + \frac{C_{N}}{C_{\ell}} \right) I_{\ell}^{m} - \varphi_{N}^{m+1} \alpha_{N}^{+} + \varphi_{N}^{m-1} \alpha_{N}^{-} - I_{b} \right] \frac{2k}{C_{N} R_{\ell}}$

1) Transmission Line

First, we assume an input voltage equal to

 $V_i = V_{pump} \sin(2\pi\omega_{pump}t) + V_{sign} \sin(2\pi\omega_{sign}t)$

in the specific case of $V_{pump} \neq 0$ and $V_{sign} \rightarrow 0$

2) TWPA

Then, we assume an input voltage equal to

$$V_i = V_{pump} \sin(2\pi\omega_{pump}t) + V_{sign} \sin(2\pi\omega_{sign}t)$$

in the specific case of $V_{pump} \neq 0$ and $V_{sign} \neq 0$

Transmission Line with Josephson elements

13

Here, we assume an input voltage equal to

 $V_i = V_{pump} \sin(2\pi\omega_{pump}t) + V_{sign} \sin(2\pi\omega_{sign}t)$

in the specific case of $V_{pump} \neq 0$ and $V_{sign} \rightarrow 0$

where $V = \sqrt{2R_i 0.001} \times 10^{\frac{P}{20}}$ and $R_i = 50\Omega$.

Next steps...

	ω _{pump} [GHz]	P _{pump} [dBm]	I _{bias} [µA]
1)	[1 ÷ 27]	[-50, -60, -70]	0
2)	7	[-50, -60, -70]	[0 ÷ 25]

The limit response vs v_{pump}

The limit response vs I bias

The limit response vs I bias

Here, we assume an input voltage equal to

 $V_i = V_{pump} \sin(2\pi\omega_{pump}t) + V_{sign} \sin(2\pi\omega_{sign}t)$

where $V = \sqrt{2R_i 0.001} \times 10^{\frac{P}{20}}$.

The gain is calculated as $Gain = 20 \log_{10} \left(\frac{V_{out}}{V_{sign}} \right) dB$.

	P _{sign} [dBm]	ω _{pump} [GHz]	P _{pump} [dBm]	$\omega_{sign} [GHz]$	I _{bias} [μA]
1)	-100	7	[-70 ÷ -50]	6	0
2)	-100	7	-60	[1 ÷ 27]	0
3)	-100	7	-60	6	[0 ÷ 25]

Gain vs Ihim		P _{sign} [dBm]	ω _{pump} [GHz]	P _{pump} [dBm]	ω _{sign} [GHz]	I _{bias} [μA]	1
Dias	3)	-100	7	-60	6	[0 ÷ 25]	24
	_						

TWJPA – Gain vs δI_c

Here, we assume the critical currents to be distributed according to

 $I_{c,n} = \overline{I_c}(1 + \delta I_c)$

with δI_c being a Gaussianly distributed number with zero average and variance $\sigma_{I_c}^2$.

TWJPA – Gain vs δI_c

Here, we assume the critical currents to be distributed according to

 $I_{c,n} = \overline{I_c}(1 + \delta I_c)$

with δI_c being a Gaussianly distributed number with zero average and variance $\sigma_{I_c}^2$.

Perspectives: Resonant Phase Matching strategy

This new design is specifically made to reduce higher harmonics generation and unwanted mixing products, by lowering the Josephson plasma frequency and making the dispersion relation highly nonlinear with the introduction of elements to induce resonant phase matching

Fig. 1. Josephson traveling-wave parametric amplifier. (A) Circuit diagram. The JTWPA is implemented as a nonlinear lumped-element transmission line; one unit cell consists of a Josephson junction with critical current $I_0 = 4.6 \,\mu$ A and intrinsic capacitance $C_J = 55$ fF with a capacitive shunt to ground C = 45 fF. Every third unit cell includes a lumped-element resonator designed with capacitance $C_r = 6$ pF and inductance $L_r = 120$ pH, with coupling strength set by a capacitor $C_c = 20$ fF. The value of C in the resonator-loaded cell is reduced to compensate for the addition of C_c . **(B)** False-color optical micrograph. The coloring corresponds to the inset in (A), with the lower metal layer shown in gray. **(C)** Photograph of a 2037 junction JTWPA. The line is meandered several times on the 5 mm by 5 mm chip to achieve the desired amplifier gain.

K. O'Brien, et al., Resonant Phase Matching of JJ TWPAs, PRL **113**, 157001 (2014) C. Macklin, et al., A near-quantum-limited JTWPA, Science **350**, 307 (2015)

Conclusions

We demonstrated:

- the amplification of a weak signal in the presence of a strong pump tone in a TWJPA, obtaining a Gain up to ~10 dB for a specific device configuration;
- the robustness of the effect against unavoidable fluctuations in the main Josephson parameter, i.e., the critical current.

Perspectives:

- Optimization of the system parameter to maximize the amplification;
- Study of impact of fluctuations of the various system parameters;
- Study of the impact of thermal noise;
- Implementing the "resonant phase matching strategy";
- Change the specifics of the devices forming the transmission lines, e.g., the CPR of the junction or including dc-SQUID.

Conclusions

We demonstrated:

- the amplification of a weak signal in the presence of a strong pump tone in a TWJPA, obtaining a Gain up to ~10 dB for a specific device configuration;
- the robustness of the effect against unavoidable fluctuations in the main Josephson parameter, i.e., the critical current.

DARTWARS publications

- C. Guarcello, et al., Modeling of Josephson Traveling Wave Parametric Amplifiers, accepted on IEEE TAS, 2022
- M. Borghesi, et al., Progress in the development of a KITWPA for the DARTWARS project, under review on NIMA, 2022
- V. Granata, et al., Characterization of Traveling-Wave Josephson Parametric Amplifiers at T = 0.3 K, under review on IEEE TAS, 2022
- A. Rettaroli, et al., Ultra low noise readout with travelling wave parametric amplifiers: the DARTWARS project, under review on NIMA, 2022
- A. Giachero, et al., Detector Array Readout with Traveling Wave Amplifiers, J Low Temp Phys, 2022
- S. Pagano, et al., Development of Quantum Limited Superconducting Amplifiers for Advanced Detection, IEEE TAS, 32, 4, 1-5, 2022

