DARTWARS: development of Kinetic Inductance TWPAs with DARTWARS

CSN5 Technological research

Marco Faverzani

University & INFN Milano - Bicocca

DARTWARS

Detector Array Readout with Traveling Wave AmplifieRS

Ultra low noise amplification for microwave readout: why?

MKIDs

Microwave Kinetic Inductance Detectors multiplexed in the RF band

• Amplified by High-Electron-Mobility Transistor (HEMT)

 $rac{1}{2}$ broad bandwidth ~ 4/5GHz energy resolution/NEP limited by the noise: $T_{\rm N}$ ~ 2-5 K

RF cavities RF signal from cavities (e.g., axion searches)

• Josephson parametric amplifier (JPA)

Quantum limited noise
Inverse
Inve

TESs/MMCs

Microwave multiplexed readout

• Amplified by High-Electron-Mobility Transistor (HEMT)

 $\textcircled{broad bandwidth ~ 4/5GHz} \\ \textcircled{broad bandwidth ~ 4/5GHz} \\ \textcircled{broad bandwidth ~ 4/5GHz} \\ \textcircled{broad bandwidth ~ 2-5 K} \\ \end{matrix}{broad bandwidth ~ 2-5 K} \\ \textcircled{broad bandwidth ~ 2-5 K} \\ \textcircled{broad bandwidth ~ 2-5 K} \\ \textcircled{broad bandwidth ~ 2-5 K} \\ \end{matrix}{broad ban$

Qubits

RF probe signal scattered by superconducting resonator coupled to the qubit circuit

• Josephson parametric amplifier (JPA)

Resonance if:

- 1) sinusoidal driving force ($f_d = f_r \rightarrow$ linear gain with time)
- 2) one parameter periodically varied ($f_d = 2f_r \rightarrow exponential growth$)

e.g., the pendulum:
$$\ddot{\theta} \cong \frac{g}{l} \theta$$
 , $\omega = \sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

Resonance if:

- 1) sinusoidal driving force ($f_d = f_r \rightarrow$ linear gain with time)
- 2) one parameter periodically varied ($f_d = 2f_r \rightarrow exponential growth$)

e.g., the pendulum:
$$\ddot{\theta} \cong \frac{g}{l} \theta$$
 , $\omega = \sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

Resonance if:

- 1) sinusoidal driving force ($f_d = f_r \rightarrow$ linear gain with time)
- 2) one parameter periodically varied ($f_d = 2f_r \rightarrow exponential growth$)

e.g., the pendulum:
$$\ddot{\theta} \cong \frac{g}{l} \theta$$
 , $\omega = \sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

resonator-based parametric amplifiers (JPA, JPC, etc.)

Resonance if:

- 1) sinusoidal driving force ($f_d = f_r \rightarrow$ linear gain with time)
- 2) one parameter periodically varied ($f_d = 2f_r \rightarrow exponential growth$)

e.g., the pendulum:
$$\ddot{\theta} \cong \frac{g}{l} \theta$$
 , $\omega = \sqrt{g/l}$

if
$$l = l(t) = l_0 \sin(2\omega t) \rightarrow \frac{dE(t)}{dt} \propto E(t)$$

Traveling wave parametric amplifiers (J-TWPA, KI-TWPA) $P_{\rm in} \qquad P_{\rm out} \qquad P_{\rm out}$

- the input of the amplifier is sensitive to both the noise and the signal at the input
- the amplifier adds noise to several sources (thermal fluctuations, e-h recombination in semiconductors, etc.)
- Heisenberg's uncertainty principle sets a lower limit to the added noise
- a quantum limited amplifier has an added (temperature) noise $T_N \sim \frac{bf}{k_B} \sim 50 \text{ mK/GHz}$

High fidelity qubits readout

Josephson Parametric Amplifiers (JPA)

- signal to be amplified mixed with a strong pump through a nonlinear element
- in JPAs, non-linearity provided by the Josephson junction
- demonstrated noise level close to the quantum limit
- very narrow bandwidth < 100 MHz
 - few detectors/qubits per line
 - product gain-BW is fixed
- very small saturation power < -100 dBm
 ➢ few devices per line
- currently employed as a first stage of amplification in reading out superconducting qubits and RF cavities

IEEE Microwave Magazine 21, 8 (2020) 45

Traveling Wave Parametric Amplifiers (TWPAs)

- transmission line with embedded non-linear elements *Phys. Rev. B* 87, 144301
- non-linearity provided by Josephson Junction or intrinsic (non-linear) Kinetic Inductance of a superconductor. At the first order:

$$L(I) = L_0 \left(1 + \frac{I}{I_*}\right)^2$$

where I_* is material-dependent, expected to be close to I_c

4-Wave Mixing (4WM): $2f_P = f_s + f_i$ unbiased transmission line 3-Wave Mixing (3WM): $f_{\rm P} = f_{\rm s} + f_{\rm i}$ biased transmission line

A large pump tone (f_P) modulates the inductance, coupling the pump to a signal and an idler tone via frequency mixing

TWPAs: Josephson and Kinetic Inductance

Science 350, 6258 (2015) 307-310

- TWJPAs: non-linear lumped element transmission line
- one single cell consists of a Josephson Junction plus a capacitive shunt toward the ground
- demonstrated quantum-limited noise level
- wide BW > 4 GHz @ 5 GHz
- limited gain < 20 dB
- small saturation power < -90 dBm

Kinetic Inductance Traveling Wave Parametric Amplifiers

Nature Physics 8 (2012) 623–627

- KI-TWPA (a.k.a. KIT): distributed non-linear kinetic inductance of TiN or NbTiN
- patterned into CPW or lumped element artificial transmission line
- noise close to quantum limit
- wide BW >4 GHz @ 5 GHz
- limited gain and gain profile with large ripple
- high saturation power: from -50 to -45 dBm

DARTWARS: Detector Array Readout with Traveling Wave AmplifieRS

The main aims of DARTWARS are:

- 1. development of high-performance amplifiers both KIT and TWJPA optimizing design, new materials and fabrication processes
 - high gain $\sim 20 \text{ dB}$
 - large saturation power $\sim 50 \text{ dBm}$
 - (nearly) quantum limited noise $T_{\rm N} < 600 \text{ mK}$
 - reduced gain ripple
 - yield improvement
- demonstration of readout of various detectors/devices (i.e., TESs, MKIDs, RF cavities and qubits) with improved performances thanks to the amplification with added noise at the quantum level

picture courtesy of INRiM

DARTWARS: the collaboration

IBS/CAPP

South Korea

NIST

INEN-LE

TIFPA
FBK

Italy

INFN-LNF

INFN-SA

INFN-MIB

INRiM

INFN units:

- MIB: coordination of the whole project with a focus on the design and characterization of the devices (mainly DTWKI)
- LNF COLD (CryOgenic Laboratory for Detectors): supervision of the devices' fabrication and participation in the characterization (mainly TWJPA)
- LE: investigation of magnon-cavity polaritons applied to quantum computing and quantum sensing
- SA: coordination of design and simulation of TWPAs; packaging and testing of TWJPA
- TIFPA: supervision of production at FBK; participation in the characterization (mainly DTWKI)

Other institutions:

- Fondazione Bruno Kessler (FBK) Micro System Technology group (MST) of Centre for Materials and Microsystems (CMM): fabrication of DTWKI prototypes
- Istituto Nazionale di Ricerca Metrologica (INRiM): design and fabrication of TWJPA prototypes
- Institute for Basic Science Center for Axion and Precision Physics Research (IBS-CAPP): co-finances the production; participation in the characterization
- National Institute of Standards and Technology (NIST): participation in designing and testing of DTWKI

KITWPA within DARTWARS

- CPW:
 - ➢ first implementation of KI-TWPA
 - ➢ ease of fabrication
 - ➤ good gains, BW and noise
 - ➤ 2 m long CPW for +15 dB gain
 - \succ high impedance (200 Ω) → match to 50 Ω required
- Artificial transmission line:
 - small sections of a CPW recreate a transmission line of lumped-elements
 - \geq 20 cm long transmission line for +15 dB gain
 - near-quantum-limited noise demonstrated in the 3.5-5.5 GHz

M. Malnou et al., PRX Quantum 2 (2021) 010302

Artificial transmission line

cQED@Tn - 5/10/2022

B. Eom et. al., Nature Phys. 8 (2012)

623-627

KITWPA: film optimization

- Goal: deposition of a 20 nm thick NbTiN film
- depositions of Nb and NbN @FBK to test the new sputter (KS 800 cluster)
- $T_{\rm c}$ and RRR compatible with literature
- NbTiN deposited with Nb_{0.66}Ti_{0.34} sputter target
 ➢ obtained T_c=(10-11.5) K (literature 13-15 K)
- new sputter target $Nb_{0.80}Ti_{0.20}$
- Nb dry etch with SF₆ and Ar (new recipe)
- Several miroresonators produced in 2021-22, first prototype of KI-TWPA produced during summer 2022

KITWPA: material characterization @FBK/TIFPA

Marco Faverzani

cQED@Tn - 5/10/2022

KITWPA: material characterization @FBK/TIFPA (cont'd)

need to:

- relate L_k to $f_{res} \rightarrow$ Sonnet simulation: $(f_{res})^{-2} \propto (L_k + L_g)C$
- relate *I*² to *P*_{feedline} → estimated *C* and *L* from Sonnet
 → circuit simulator (QUCS)
- estimate I_* from $L_k(f_{res})$ (Sonnet)

 $L_{\rm s}$ measured between ~ 4 and 50 pH/sq I_{*} (18 – 20) mA $I_{\rm c}$ (2.2 – 2.4) mA

max non-linearity $I_c/I_* = 0.25$

cQED@Tn - 5/10/2022

KITWPA – Design

KITWPA – Design

KITWPA – Design

KITWPA – Production

Marco Faverzani

Optical Microscopy Images

Scanning Electron Microscopy Images

KITWPA – Expected performance

KITWPA: film optimization (cont'd)

- tests with $Nb_{0.80}Ti_{0.20}$ sputter target
- optimization of recipe: N_2 flow, power and pressure
- wafer cut in strips $\rightarrow T_c$, RRR, $R_n \rightarrow L_s$
- $T_{\rm c} = (5-14)$ K (literature 13-15 K)
- thickness disuniformity down to few %

- the demand for high gain/wide bandwidth with low noise amplifiers is driven by the readout of superconducting qubits, cryo detectors, RF cavities, ...
- design of DARTWARS KI-TWPA started in 2021 and the first material characterizations have been performed across 2021 and 2022. The first devices has been produced during summer; next production with new target expected soon
- demonstration of detectors/qubits readout is expected for 2023
- DARTWARS will allow to build the expertise within INFN in designing and developing innovative quantum devices
- the results of DARTWARS will potentially impact particle/astro-physics (such as m_v measurement, dark matter, $0\nu\beta\beta$, coherent elastic neutrino-nucleus scattering, ...) as much as fast-growing fields such as quantum computing/sensing, quantum squeezing, quantum radar, ...
- more details available at <u>https://dartwars.unimib.it/</u> and <u>https://biqute.unimib.it/</u>

DARTWARS: readout of superconducting devices

cQED@Tn - 5/10/2022