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FIG. 1. Sketch of the Wigner functions for fixed ✏ and �,
and various values of ! across the criticality. Here, we see how
the system goes from the normal to the symmetry-breaking
phase. The system is highly susceptible in the proximity of the
criticality (blue and light-blue), and so it can be exploited in
high-sensitivity magnetometry. Moreover, the system shows
two highly distinguishable phases, corresponding to the vac-
uum and displaced states (gray and red), which can be applied
in high-fidelity qubit readout.

describes e↵ectively the system, by interpreting ! = !r�
!p/2 as the pump-resonator detuning, ✏ as the e↵ective
pump-power, and � as the SQUID-induced nonlinearity.
We consider the system embedded in a Markovian ther-
mal bath at zero temperature, described by the Lindblad
dissipation superoperator LD[·] = ~�[2â · â† � {â†â, ·}],
where � � 0 is the system-bath coupling. Such a dis-
sipator leaves the model Z2 invariant [56]. With no
loss of generality, we take ✏ positive. For � = 0, the
model is Gaussian and its phenomenology can be eas-
ily explained. In the absence of noise, for � = 0, the
model has a ground state only for ✏ < |!|. This is a
squeezed vacuum state with squeezing approaching in-
finity in the ✏/|!| ! 1 limit. When the bath is turned
on, for � > 0, the diverging point is shifted. In this
case, the steady-state is a squeezed thermal-state and
exists only for ✏ <

p
!2 + �2 ⌘ ✏c, with purity approach-

ing zero when ✏/✏c ! 1. The e↵ect of the nonlinearity
� > 0 is to regularize the model for all parameter val-
ues, thus erasing the divergences. In the scaling limit
� ! 0 a second-order dissipative phase transition (DPT)
emerges, associated with the spontaneous breaking the
Z2-symmetry of the model [26, 56]. The steady-state is
still Gaussian for ✏ < ✏c. Beyond the critical point, for
✏ > ✏c, the steady-state is double-degenerate, and it is
given by a statistical mixture of two equiprobable dis-
placed squeezed thermal-states [27], see Fig. 1. Since �
can be made small in a circuit QED implementation, we
can exploit the presence of this DPT for both quantum
parameter estimation and discrimination. On the one
hand, we can use the large susceptibility of the steady
state in proximity of the critical point, in order to get
a good estimation of !. In turn, as the resonator fre-
quency has a steep dependence on the external magnetic
field threading the SQUID loop, the DPT can be applied
in the design of a critical magnetometer. On the other

hand, the presence of the DPT allows one to discriminate
between two discrete values of ! in a single-shot measure-
ment. In fact, since distinct phases corresponds to qual-
ititatively di↵erent quantum states, one should expect
a higher discrimination power for two values of ! cor-
responding to the normal and symmetry-broken phases.
As a natural application we consider high-fidelity super-
conducting qubit readout.
Quantum parameter estimation.— Let us briefly re-

view the quantum metrology tools relevant for our anal-
ysis. Given an observable Ô, we can define the signal-to-
noise ratio (SNR) for estimating the parameter ! as

S![Ô] =
|@!hÔi!|2

�Ô2
!

, (2)

where �Ô2

!
= hÔ2i! � hÔi2

!
and the index ! indi-

cates the expectation value computed with respect to the
state ⇢! that belongs to the steady-state manifold. The
corresponding precision over M � 1 measurements is
�!2 ' [MS!]�1. Here, we consider the SNRs for homo-
dyne and heterodyne detection, and we compare them
with the QFI.

The homodyne detection POVM is XHom

'
=

{|x'ihx'|}x'2R, where |x'i is an eigenstate of the ro-
tated quadrature operator x̂' = cos(')x̂ + sin(')p̂. Due
to the Z2-symmetry of the system, we consider the quan-
tity S![x̂2

'
], and define the optimal homodyne SNR as

SHom

!
= max' S![x̂2

'
]. The heterodyne detection POVM

is XHet =
�

1

⇡
|↵ih↵|

 
↵2C, where |↵i is a coherent state.

This corresponds to a noisy measurement of the conju-
gate quadratures, with outcomes X and P . We then
compute X2 + P 2 and define the corresponding SNR,
that can be expressed as SHet

!
= |@!hââ†i!|2/[hâ2â†2i! �

hââ†i2
!
] [56]. If instead we maximize the SNR among all

the observables, we obtain the QFI: I! = max
Ô

S![Ô].
This can be expressed as [57]

I! = lim
d!!0

8

d!2

h
1 �

p
F (⇢!, ⇢!�d!)

i
, (3)

where F (⇢!, ⇢!0) = [Tr (
p

⇢!
p

⇢!0⇢!)]2 is the fidelity be-
tween the steady-states ⇢! and ⇢!0 .
(i) The normal phase (� ! 0).— To begin with,

we consider the case � ! 0, which provides us with a
good approximation of the steady-state when we are far
enough from the DPT. The model in Eq. (1) with � = 0
has a steady-state solution only for ✏ < ✏c, corresponding
to the normal phase. Using the analytical formula for
Gaussian states [58], we compute the QFI with respect
to the parameter !, in the steady-states manifold:

I!(✏ < ✏c)
�!0���! 1

2✏2
c

� ✏2


2N +

8!2

✏2
N2

�
, (4)

where N = ✏2/[2(✏2
c

� ✏2)] is the number of photons (see
Fig. 2(a)). Here, it is clear that we have two possible
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ĤB(t) = Ĥ(t)sys +B ĤI (1)

�B =
1p
GB

(2)

GB ⇠ t2N2 (3)
N ! 1 (4)

G� ⇠ 1

(�� �c)
2 (5)

|.i ⌦D�↵S�|0i+ |&i ⌦D↵S�|0i (6)
� > �c 0 (7)

H =
NX

i=1

⇣
!iâ

†
i âi + ✏iâ

†
i â

†
i âiâi

⌘
+
X

i>j

�i,j(â
†
i + âi)(â

†
j + âj), (8)

+Ht
I (9)

N � 1 (10)
⌦/!0 � 1 (11)

Ĥ = Ĥm + !câ
†â + g�̂

�
â† + â

�
(12)

�̂ =
X

µi,j |SiihSj | (13)

G⌦ (14)
g(t) : 0 �! 1 (15)

h (g)|Ô| (g)i (16)
| (g)i = |0i ⌦ |#i (17)

GA = 4[h@A |@A i+ (h@A | i)2] (18)
1

!0
p
1� g

(19)

a. Critical scaling of the QFI

G⌦ ⇠ T 4 (20)
G⌦ ⇠ T 2 (21)
G⌦ ⇠ T (22)

G!0 ⇠ hN̂i2T 2 (23)

G!0 ⇠ hN̂iT (24)
(25)

1

Fundamental limits

Practical applications
1- Quantum Magnetometry

2- Qubit readout

Resources:
4

Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, �0, yielding slightly different frequency–flux curvatures.

New Journal of Physics 15 (2013) 105002 (http://www.njp.org/)
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104 Critical metrology with a finite-size quantum system

Fig. V.1 Two examples of sensors exploiting phase transitions. Left: trails left by a neutrino interacting
with an electron in a bubble chamber (CERN image archives). Right: Superconducting circuit used for
single-photon detection (NIST image archives).

V.1 Introduction

In a system close to a phase transition, small perturbations can lead to large, observable change. It is thus
intuitive that such systems could be used for sensing tasks. This principle has already been applied with
classical phase transition, most notably for particle detection. Bubble chambers are an example: when
a particle goes through a liquid superheated in a metastable state, it deposits energy, which makes the
liquid vaporize locally and create an observable trail. Similarly, superconducting circuits just below the
superconducting-metal phase transition can be used to detect single photons with excellent efficiency
[124, 150].

In this context, quantum technologies carry two interesting perspectives. First, studying quantum
phase transition in addition to classical ones extends the scope of phenomena available; in particular,
quantum critical effects can also be observed at zero temperature. Second, thanks to the development
of quantum metrology, it is possible to derive both ultimate bounds on the achievable precision, and
indications about how to reach this precision. Indeed, if the symmetric logarithm derivative is known,
it is possible to compute which observable allows to saturate the CR bound. More generally, the tools
of quantum metrology give us indications to "dissect" experimental signatures and extract the relevant
information from it.

In the last few years, a growing number of works have studied phase transitions from a quantum
sensing perspective. For instance, several protocols have been proposed to amplify a weak input signal
by crossing a first-order phase transition, or by exploiting symmetry breaking effects [86, 126, 78, 236].
This is the quantum equivalent of the existing protocols presented above.

Other works have focused instead on the correlations near a critical point, with different concepts and
languages. For the sake of this presentation, it is possible to roughly divide them into two classes.

The first approach, which we will call the dynamical paradigm, focus on the time evolution induced by
a perturbation of a Hamiltonian close to a critical point [229, 219, 187, 83]. Let us take a simple example,
based on the Ising Hamiltonian with transverse field ĤI =⇤J ⇥i, j ⌅̂ z

i ⌅̂ z
j ⇤h⇥i ⌅̂ x

i at zero temperature. The

(CERN image archives) 

Bubble chamber
(Liquid-gas)

(NIST image archives) 

Transition-edge sensors
(Superconductor-normal)

Critical sensors
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P. Zanardi et al., Phys. Rev. A 78, 042105 (2008) K. Macieszczak et al., Phys. Rev. A 93, 022103 (2016)
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At the Limits of Criticality-Based Quantum Metrology:
Apparent Super-Heisenberg Scaling Revisited
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1Instytut Fizyki im. Mariana Smoluchowskiego, Uniwersytet Jagielloński,
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2Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4,

20018 Donostia-San Sebastián, Spain
3Faculty of Applied Physics and Mathematics, Gdańsk University of Technology,

Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
and National Quantum Information Center of Gdańsk,

Władysława Andersa 27, 81-824 Sopot, Poland
4Mark Kac Complex Systems Research Center, Uniwersytet Jagielloński, Kraków 30-348, Poland

(Received 6 May 2017; revised manuscript received 19 February 2018; published 19 April 2018)

We address the question of whether the super-Heisenberg scaling for quantum estimation is indeed
realizable. We unify the results of two approaches. In the first one, the original system is compared with its
copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the
Hamiltonian, the precision of its estimation is known to scale at most as N−1 (Heisenberg scaling) in terms
of the number of elementary subsystems used N. The second approach compares the overlap between the
ground states of the parameter-dependent Hamiltonian in critical systems, often leading to an apparent
super-Heisenberg scaling. However, we point out that if one takes into account the scaling of time needed to
perform the necessary operations, i.e., ensuring adiabaticity of the evolution, the Heisenberg limit given by
the rotation scenario is recovered. We illustrate the general theory on a ferromagnetic Heisenberg spin chain
example and show that it exhibits such super-Heisenberg scaling of ground-state fidelity around the critical
value of the parameter (magnetic field) governing the one-body part of the Hamiltonian. Even an
elementary estimator represented by a single-site magnetization already outperforms the Heisenberg
behavior providing the N−1.5 scaling. In this case, Fisher information sets the ultimate scaling as N−1.75,
which can be saturated by measuring magnetization on all sites simultaneously. We discuss universal
scaling predictions of the estimation precision offered by such observables, both at zero and finite
temperatures, and support them with numerical simulations in the model. We provide an experimental
proposal of realization of the considered model via mapping the system to ultracold bosons in a periodically
shaken optical lattice. We explicitly derive that the Heisenberg limit is recovered when the time needed for
preparation of quantum states involved is taken into account.

DOI: 10.1103/PhysRevX.8.021022 Subject Areas: Quantum Physics,
Quantum Information

I. INTRODUCTION

At the center of quantum metrology [1–4] lies the
concept of estimation of a small external parameter with
the help of a quantum procedure. The main idea is to

engineer a family of quantum states depending strongly
on that parameter in the sense that a small difference in the
parameter value makes the states significantly different
from each other. The relevant quantifier of a distance
between quantum states is the quantum fidelity [5],

F ðρ̂; σ̂Þ ¼ Tr
! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̂
p

σ̂
ffiffiffi
ρ̂

pq #
; ð1Þ

where density operators ρ̂ and σ̂ describe the states being
compared.
Now consider a family of quantum states ρ̂ðλÞ controlled

by a parameter λ and let δλ be a small shift of the parameter
that we want to estimate. An ultimate bound on the

*marek.rams@uj.edu.pl
†piotr.sierant@uj.edu.pl
‡pawel@mif.pg.gda.pl
§jakub.zakrzewski@uj.edu.pl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.
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N ⇠ 1N ! 1
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 L. Bakemeier, et al., Phys. Rev. A 85, 043821 (2012). M.-J. Hwang, et al., Phys. Rev. Lett. 115, 180404 (2015).

Quantum Rabi model

the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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Superradiant phase transition in the
scaling limit
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Quantum Rabi model

the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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Quantum Rabi model

the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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Finite-component critical probe

the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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†
i + âi)(â
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Ĥ = Ĥm + !câ
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the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]

PRL 115, 180404 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

30 OCTOBER 2015

180404-2
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†
i â
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â + g�̂

�
â
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Scaling
limit ProbeParameter

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)

2

Quantum phase transition

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)

2
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†
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comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)

2

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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†
i â

†
i âiâi
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Ĥ = Ĥm + !câ
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1)

the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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Scaling
limit ProbeParameter

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)

2

Quantum phase transition

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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i âi + ✏iâ
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�B =
1p
GB

(2)

GB ⇠ t
2
N

2 (3)
N ! 1 (4)

G� ⇠ 1

(�� �c)
2 (5)

|.i ⌦D�↵S�|0i+ |&i ⌦D↵S�|0i (6)
� > �c 0 (7)

H =
NX

i=1

⇣
!iâ
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comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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achieve arbitrary precision. This is consistent with previ-
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ference�� = !0 T where T is the evolution time within
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â† + â
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the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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Scaling
limit ProbeParameter

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp
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one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠
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2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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Quantum phase transition

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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†
i + âi)(â
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comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:
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†a+ ⌦�z + �

�
a† + a
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where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig
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⌘(a†+a)�y to (1), which gives

HN = UHU †
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up to terms O(!0
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⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
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. In Eq. (3) ⇠ = �
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and S(⇠) = exp{ ⇠
2 (a
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2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1
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, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp
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one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '
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2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
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1 + g2
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⌘
+
X

i>j

�i,j(â
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â† + â

�
(12)

�̂ =
X

µi,j |SiihSj | (13)

µ0,1 ⇡ 0 (14)
g(t) : 0 �! 1 (15)
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the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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i âi + ✏iâ
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Scaling
limit ProbeParameter

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig
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⌘(a†+a)�y to (1), which gives

HN = UHU †
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, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
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. In Eq. (3) ⇠ = �
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4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp
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one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
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�
(12)

�̂ =
X

µi,j |SiihSj | (13)

µ0,1 ⇡ 0 (14)
g(t) : 0 �! 1 (15)
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�
(12)

�̂ =
X

µi,j |SiihSj | (13)

µ0,1 ⇡ 0 (14)
g(t) : 0 �! 1 (15)
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†
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⌘
+
X

i>j

�i,j(â
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Ĥ = Ĥm + !câ
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â† + â
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h (t)|Ô| (t)i (16)
| (g)i = |0i ⌦ |#i (17)

GA = 4[h@A |@A i+ (h@A | i)2] (18)
1

!0
p
1� g

(19)

a. Critical scaling of the QFI

G⌦ ⇠ T 4 (20)
G⌦ ⇠ T 2 (21)
G⌦ ⇠ T (22)

G!0 ⇠ hN̂i2T 2 (23)

G!0 ⇠ hN̂iT (24)
lim
t!1

| (t)i (25)

1

Driven-dissipative
case

the τ−2q scaling, a typical scaling of the adiabatic dynamics
with a finite quench time for a gapped system [16,34,35].
We identify a range of quench times which leads to
dynamics that closely follows the universal scaling, and
show that the onset of the universal dynamics can be
observed for a finiteΩ=ω0. The crossover from the universal
to the τ−2q scaling is also observed in theΩ=ω0 → ∞ limit by
ending the quench of the control parameter g below the
critical point. It demonstrates that the spectral gap opening
due to finite Ω=ω0 has the same effect as ending the quench
below the critical point in the Ω=ω0 → ∞ limit.
Quantum phase transition.—We consider the Rabi

Hamiltonian [37],

HRabi ¼ ω0a†aþΩ
2
σz − λðaþ a†Þσx; ð1Þ

where σx;z are Pauli matrices for a two-level atom and a
(a†) is an annihilation (creation) operator for a cavity field.
The cavity field frequency is ω0, the transition frequencyΩ,
and the coupling strength λ. We denote j↑ð↓Þi as eigen-
states of σz, and jmi the eigenstate of a†a. The parity
operator, Π ¼ eiπ½a

†aþð1=2Þð1þσzÞ&, which measures an even-
odd parity of total excitation number, commutes withHRabi.
The Z2 parity symmetry has been shown to be sufficient for
the model to be integrable [40]; however, a lack of a closed-
form solution makes the approach in Ref. [40] not directly
applicable to investigate the QPT.
In the Ω=ω0 → ∞ limit, we first find a unitary trans-

formation, U ¼ exp½ðλ=ΩÞðaþ a†Þðσþ − σ−Þ&, which
makes the transformed Hamiltonian U†HRabiU free of
coupling terms between spin subspaces H↓ and H↑.
Upon a projection onto H↓, i.e., Hnp ≡ h↓jU†HRabiUj↓i,
we obtain an effective low-energy Hamiltonian,

Hnp ¼ ω0a†a −
ω0g2

4
ðaþ a†Þ2 −Ω

2
; ð2Þ

where g ¼ 2λ=
ffiffiffiffiffiffiffiffiffi
ω0Ω

p
[41]. Equation (2) can be diagonal-

ized to give Hnp ¼ ϵnpb†b −Ω=2, with ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
,

which is real only for g ≤ 1 and vanishes at g ¼ 1,
locating the QPT. The low-energy eigenstates of HRabi
for g ≤ 1 are jϕm

npðgÞi ¼ S½rnpðgÞ&jmij↓i, with S½x& ¼
exp½ðx=2Þða†2 − a2Þ& and rnpðgÞ ¼ − 1

4 lnð1 − g2Þ.
The failure of Eq. (2) for g > 1 suggests that the number

of photons occupied in the cavity field becomes propor-
tional to Ω=ω0 so that the higher-order terms cannot be
neglected; i.e., superradiance occurs; it also suggests that
P↓ is no longer the low-energy subspace. In order to
properly capture the low-energy physics, we transform
HRabi of Eq. (1) by displacing the cavity field a, i.e.,
~HRabið'αgÞ ¼ D†½'αg&HRabiD½'αg& with D½α& ¼ eαða

†−aÞ

and αg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ=4g2ω0Þðg4 − 1Þ

p
, which reads

~HRabið'αgÞ ¼ ω0a†aþ
~Ω
2
τ'z − ~λðaþ a†Þτ'x þ ω0α2g; ð3Þ

where τ'z ≡j↑'ih↑'j−j↓'ih↓'j¼ðΩ=2 ~ΩÞσz'ð2λαg= ~ΩÞσx.
Equation (3) has the same structure as Eq. (1) with rescaled
frequencies, ~λ ¼

ffiffiffiffiffiffiffiffiffi
ω0Ω

p
=2g and ~Ω ¼ g2Ω. Therefore, by

employing the same procedure used to derive Hnp, we find
an effective Hamiltonian of the Rabi Hamiltonian for g > 1
from Eq. (3),

Hsp ¼ ω0a†a −
ω0

4g4
ðaþ a†Þ2 − Ω

4
ðg2 þ g−2Þ; ð4Þ

whose excitation energy is found to be ϵsp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g−4

p
,

which is real for g > 1. Note that two independent choices
of α ¼ 'αg in Eq. (3) lead to an identical spectrum. The
low-energy eigenstates of HRabi for g > 1, jϕm

spðgÞi' ¼
D½'αg&S½rspðgÞ&jmij↓'i, where rspðgÞ ¼ − 1

4 lnð1 − g−4Þ,
are, therefore, degenerate; they also have a spontaneously
broken parity symmetry, as is evident from the nonzero
coherence of the field hai ¼ 'αg. The higher-order cor-
rections in Eqs. (2) and (4) vanish exactly in the Ω=ω0 →
∞ limit. Therefore, Hnp and Hsp are the exact low-energy
effective Hamiltonian for the normal phase (g < 1) and
superradiant phase (g > 1), respectively, for which the
subscripts np and sp stand. See Ref. [42] for a detailed
derivation of the effective Hamiltonian and its solution.
Our exact solution shows that the superradiant QPT

occurs at the critical point gc ¼ 1. The rescaled cavity
photon number nc ¼ ðω0=ΩÞha†ai is zero for g < gc and
nc ¼ ðg4 − g4cÞ=4g2 for g > gc; thus, nc is an order param-
eter. The rescaled ground state energy, eGðgÞ≡ ðω0=ΩÞ
EGðgÞ, is −ω0=2 for g < gc and −ω0ðg2 þ g−2Þ=4 for
g > gc. While eGðgÞ is continuous, d2eGðgÞ=d2g is dis-
continuous at g ¼ gc, revealing the second-order nature of
the QPT [Fig. 1(a)]. Near the critical point, the excitation
energy in both phases, ϵnp and ϵsp, vanishes as ϵðgÞ ∝
jg − gcjzν with zν ¼ 1=2 [Fig. 1(b)], where ν (z) is the
(dynamical) critical exponent. Meanwhile, the variance
of position quadrature of the field x ¼ aþ a† diverges
as ΔxðgÞ ∝ jg − gcj−1=4 ∝ ϵ−1=2, from which we find that
z ¼ 2 and ν ¼ 1=4 [Fig. 1(c)]. While we have defined the
critical exponents z and ν separately by noticing that Δx
plays an analogous role of the diverging length scale in
extended quantum systems [1], only is the product zν an
important exponent in the following analysis. The critical
point also accompanies an infinite amount of squeezing in
the momentum quadrature p ¼ iða† − aÞ, so that it remains
in the minimum uncertainty state for any g, i.e., ΔxðgÞΔ
pðgÞ ¼ 1 [Fig. 1(c)].
Finite-frequency scaling.—We complete our study of the

equilibrium QPT by investigating the finite-frequency
effect. First, we derive a leading-order correction to the
exact effective Hamiltonian. To this end, we find a unitary
transformation UΩ ¼ exp½ðλ=ΩÞðaþ a†Þ − ð4λ3=3Ω3Þ
ðaþ a†Þ3ðσþ − σ−Þ& of Eq. (1) that decouples the H↓
and H↑ subspaces up to fourth order in λ=Ω and project
to H↓ to obtain [42]
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i âi + ✏iâ
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â + g�̂

�
â
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Scaling
limit ProbeParameter

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by
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2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0
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1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
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A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:
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, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp
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Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
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2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:
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Evaluation

desired value close to the critical point g = 1. Next, we
perform measurements on the field and/or the spin. Fi-
nally, we use the measurement results to infer either ⌦
(when !0 is known) or !0 (when ⌦ is known). To evalu-parler

de
mesure
de
lambda?

parler
de
mesure
de
lambda?

ate the performances of these protocols, we need first to
characterize the ground state. When ⌘ ! 0, the system
can be diagonalized using a Schrieffer-Wolff transforma-
tion [10] . We apply the unitary Û = eig

p
⌘(â†+â)�̂y to

papier
orig-
inal
SW?

papier
orig-
inal
SW?

(1), which gives:

ĤN = ÛĤÛ† = !0â
†â+⌦�̂z+

!0g2�̂z
2

�
â+ â†

�2
+O(!0

p
⌘)

(2)
ĤN describes the normal phase of the quantum Rabi

model; it is stable for g < 1. When g ! 1, the system
experience a phase transition towards to so-called super-
radiant phase . In this paper, we will focus on the normalrefref
phase. We diagonalize ĤN by projection in the lower
spin eigenspace and Bogoliubov transformation, and find
the ground state of the Rabi model in the normal phase:

| N i(�,⌦,!0) = Ŝ(⇠)|0i ⌦ |#i+O (
p
⌘) (3)

with ⇠ = �
1
4 log(1 � g2) = �

1
4 log(1 �

�2

⌦!0
) and

Ŝ(⇠) = exp{ ⇠
2 (â

†)2� ⇠⇤

2 â} the squeezing operator. The
field squeezing diverges close to the critical point; by
contrast, the fluctuations of the spin are negligible due
to the much larger spin frequency. The excitation energy,
✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the accuracy with which one can
evaluate a quantity A (with A = ⌦ or !0) by measur-
ing this state. This precision is bounded by the quan-
tum Cramer-Rao (CR) bound: �A �

1
p
HA

, where HA

is the Quantum Fisher Information (QFI). Since the sys-refref
tem is in a pure state, HA can be computed exactly as
HA = 4[h@A N |@A N i+ (h@A N | N i)2] . The domi-ref
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Safranek
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Gaus-
sian
QFI

ref
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Safranek
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Gaus-
sian
QFI

nant term of the QFI is:

HA ⇠
1

32A2(1� g)2
(4)

When we approach the critical point g = 1, HA di-
verges, which means we achieve unbounded measure-
ment precision in both measurements. This is consis-
tent with previous studies on critical metrology in light-
matter systems [6]. To verify whether this bound is sat-
urable with practical observables, we have also studied
the Fisher information (FI). We found that the quantum
CR bound can be saturated by performing homodyne
measurements on the field only. We also checked the QFIadd

photon-
number?

add
photon-
number?

in the superradiant phase, and found similar behavior.
Analysis of resources To assess the performances of

our protocols (or any other criticality-based protocol), we

FIG. 1. Left: H⌦ versus g, for ⌦
!0

= 20 (orange), 100 (blue),
and 500 (green). Center: ratio FI/QFI for homodyne measure-
ment of the x̂ quadrature. The Cramer-Rao bound can be at-
tained for all values of g. Right: same, for measurement of
the x̂+p̂p

2
. The FI achieve a significant fraction of the QFI, with

equality at the critical point g = 1

need a benchmark. For the estimation of a bosonic fre-
quency !0, it is standard to consider an interferometric
protocol involving a phase difference �� = !0T with
T the evolution time (for optical signals for instance,
this can be done using Fabry-Perot cavities). To en- ref

Fabry-
Perot
et
Mat-
teo,
plus
clair

ref
Fabry-
Perot
et
Mat-
teo,
plus
clair

sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hN̂i. A lossless interferometric proto-
col have a precision limited by the Heisenberg limit:
H!0 ⇠ hN̂i

2T 2. For the critical protocol, we can read-

parler
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N2 >
ou <
N >2?
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l’energie?
<
N2 >
ou <
N >2?

ily compute h N |N̂ | N i = sinh ⇠2 ⇠
1

4
p

1�g2
using

(3). As of the duration of the protocol, the most impor-
tant contribution is the state preparation time: since the
gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means the time needed to reach a point arbi-
trarily close to the transition will diverge. We have con-

ref
adiab
the-
ory

ref
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the-
ory

sidered a sweep of g with a (generally time-dependent)
speed v(g) = dg

dt . We found that at any time, the follow-
ing bound should be satisfied to prevent population of the
excited state:

v(g) ⌧
2g

1 + g2
!0(1� g2)3/2 (5)

Thus, the time needed to sweep the coupling constant
from 0 to some value g ⇠ 1 is:

T =

Z g

0

1

v(g0)
dg0 ⇠

1
p
2!0

1
p
1� g

(6)

Which indeed diverges when g goes to 1. We inject
the expressions for hN̂i and T into (4), and find:

H!0 ⇠ hN̂i
2T 2 (7)

Therefore, the critical protocol allows to estimate !0

with Heisenberg-limited precision. Hence for this es-
timation, adiabatic and interferometric protocols yield

2
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ĤN describes the normal phase of the quantum Rabi

model; it is stable for g < 1. When g ! 1, the system
experience a phase transition towards to so-called super-
radiant phase . In this paper, we will focus on the normalrefref
phase. We diagonalize ĤN by projection in the lower
spin eigenspace and Bogoliubov transformation, and find
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| N i(�,⌦,!0) = Ŝ(⇠)|0i ⌦ |#i+O (
p
⌘) (3)

with ⇠ = �
1
4 log(1 � g2) = �

1
4 log(1 �

�2

⌦!0
) and
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†)2� ⇠⇤
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When we approach the critical point g = 1, HA di-
verges, which means we achieve unbounded measure-
ment precision in both measurements. This is consis-
tent with previous studies on critical metrology in light-
matter systems [6]. To verify whether this bound is sat-
urable with practical observables, we have also studied
the Fisher information (FI). We found that the quantum
CR bound can be saturated by performing homodyne
measurements on the field only. We also checked the QFIadd
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desired value close to the critical point g = 1. Next, we
perform measurements on the field and/or the spin. Fi-
nally, we use the measurement results to infer either ⌦
(when !0 is known) or !0 (when ⌦ is known). To evalu-parler
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ate the performances of these protocols, we need first to
characterize the ground state. When ⌘ ! 0, the system
can be diagonalized using a Schrieffer-Wolff transforma-
tion [10] . We apply the unitary Û = eig

p
⌘(â†+â)�̂y to

papier
orig-
inal
SW?

papier
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inal
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(1), which gives:
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ĤN describes the normal phase of the quantum Rabi

model; it is stable for g < 1. When g ! 1, the system
experience a phase transition towards to so-called super-
radiant phase . In this paper, we will focus on the normalrefref
phase. We diagonalize ĤN by projection in the lower
spin eigenspace and Bogoliubov transformation, and find
the ground state of the Rabi model in the normal phase:

| N i(�,⌦,!0) = Ŝ(⇠)|0i ⌦ |#i+O (
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with ⇠ = �
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2 â} the squeezing operator. The
field squeezing diverges close to the critical point; by
contrast, the fluctuations of the spin are negligible due
to the much larger spin frequency. The excitation energy,
✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the accuracy with which one can
evaluate a quantity A (with A = ⌦ or !0) by measur-
ing this state. This precision is bounded by the quan-
tum Cramer-Rao (CR) bound: �A �

1
p
HA

, where HA

is the Quantum Fisher Information (QFI). Since the sys-refref
tem is in a pure state, HA can be computed exactly as
HA = 4[h@A N |@A N i+ (h@A N | N i)2] . The domi-ref
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nant term of the QFI is:

HA ⇠
1

32A2(1� g)2
(4)

When we approach the critical point g = 1, HA di-
verges, which means we achieve unbounded measure-
ment precision in both measurements. This is consis-
tent with previous studies on critical metrology in light-
matter systems [6]. To verify whether this bound is sat-
urable with practical observables, we have also studied
the Fisher information (FI). We found that the quantum
CR bound can be saturated by performing homodyne
measurements on the field only. We also checked the QFIadd

photon-
number?

add
photon-
number?

in the superradiant phase, and found similar behavior.
Analysis of resources To assess the performances of

our protocols (or any other criticality-based protocol), we

FIG. 1. Left: H⌦ versus g, for ⌦
!0

= 20 (orange), 100 (blue),
and 500 (green). Center: ratio FI/QFI for homodyne measure-
ment of the x̂ quadrature. The Cramer-Rao bound can be at-
tained for all values of g. Right: same, for measurement of
the x̂+p̂p
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need a benchmark. For the estimation of a bosonic fre-
quency !0, it is standard to consider an interferometric
protocol involving a phase difference �� = !0T with
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sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hN̂i. A lossless interferometric proto-
col have a precision limited by the Heisenberg limit:
H!0 ⇠ hN̂i

2T 2. For the critical protocol, we can read-
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(3). As of the duration of the protocol, the most impor-
tant contribution is the state preparation time: since the
gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means the time needed to reach a point arbi-
trarily close to the transition will diverge. We have con-
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sidered a sweep of g with a (generally time-dependent)
speed v(g) = dg

dt . We found that at any time, the follow-
ing bound should be satisfied to prevent population of the
excited state:
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Thus, the time needed to sweep the coupling constant
from 0 to some value g ⇠ 1 is:
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Which indeed diverges when g goes to 1. We inject
the expressions for hN̂i and T into (4), and find:
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2T 2 (7)

Therefore, the critical protocol allows to estimate !0

with Heisenberg-limited precision. Hence for this es-
timation, adiabatic and interferometric protocols yield
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i âi + ✏iâ
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FIG. 1. Left: H⌦ versus g, for ⌦/!0 = 20 (orange), 100
(blue), and 500 (green). Center: ratio FI/QFI for homodyne
measurement of the x quadrature. The Cramer-Rao bound can
be attained for all values of g. Right: same, for measurement
of the x+pp
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In turn, the time needed to sweep the coupling constant
from 0 to some value g ' 1 is given by

T =

Z g

0

ds

v(s)
⇠ !�1

0 (1� g)�
1
2 , (6)

which indeed diverges when g goes to 1. Upon inserting
the expressions for hNi and T into (4), we find

H!0 ⇠ hNi
2 T 2 , (7)

i.e., the critical protocol allows one to estimate !0 with
Heisenberg-limited precision (in energy and time). In
other words, adiabatic and interferometric protocols pro-
vide similar performances for the estimation of a bosonic
frequency. Similar results have been obtained for spin
systems [9].

Concerning the estimation of ⌦, a natural benchmark
is given the by Ramsey interferometry with a single spin.
In this case, the relevant resource is the protocol duration
T . For noiseless Ramsey interferometry, QFI scales like

T 2. By contrast, in the critical case, we found using (6)
and (8):

H⌦ '
!4
0

8⌦2
T 4 , (8)

i.e. our protocol achieves quartic scaling in the duration
of the protocol, while Ramsey interferometry only scales
quadratically. To the best of our knowledge, this is the
first unambiguous demonstration of time-scaling advan-
tage for a critical metrological protocol in light-matter
system.

Dissipative process The above results are valid for iso-
lated systems. However, decoherence due the interac-
tion with the environment, generally reduces the perfor-
mances of metrological protocols. In order to assess our
protocol in realistic conditions, let us now consider the
presence of both photon loss and spin decay. The dis-
sipative dynamic of the system is described by a master
equation (ME) of the form

⇢̇ = �i[H, ⇢] + L[a]⇢+ �L[��]⇢ , (9)

where the Lindblad terms read L[A]⇢ = 2A⇢A†
�

(A†A, ⇢). We also assume /!0 = O(1) and �/⌦ =
O(1) [12]. Upon considering the spin-decay term ex-
plicitely and using Schrieffer-Wolff transformation, we
decouple the spin and field, and project the spin into
the |#ih#| subspace. This yields an effective ME for
the bosonic part ⇢̇b = �i[!0a†a � Y (a + a†)2, ⇢b] +
L[a](⇢b) + �/⌦Y L[a+ a†]⇢b +O(!0

p
⌘), with X =

⌦2/(�2 +⌦2) and Y = 1
4!0Xg2. Since this equation is

quadratic in a, it can be solved by a Gaussian ansatz.
The dynamic is then fully characterized by the evolu-
tion equation for the covariance matrix of the state (the
displacement vector decays quickly to zero and may be
safely discarded), i.e. @t� = B� + �BT

� 2(� � �L)
where

B =

✓
0 !0

4Y � !0 0

◆
,

and �L = 1
2 [I + Diag(0, 4Y �/(⌦))]. This linear equa-

tion may be solved exactly by diagonalization. Upon
evaluating the lowest eigenvalue, one may estimate the
typical time needed to reach the steady-state, T '

gc/ (g�gc)�1(1+!2
0/

2)�1. This value diverges near
the transition, indicating a critical slowing down. The
steady-state is a squeezeed (undisplaced) thermal state,
with covariance matrix given by
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†
i + âi)(â
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Ĥ = Ĥm + !câ
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comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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j + âj), (8)

+Ht
I (9)

N � 1 (10)
⌦/!0 � 1 (11)
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desired value close to the critical point g = 1. Next, we
perform measurements on the field and/or the spin. Fi-
nally, we use the measurement results to infer either ⌦
(when !0 is known) or !0 (when ⌦ is known). To evalu-parler

de
mesure
de
lambda?

parler
de
mesure
de
lambda?

ate the performances of these protocols, we need first to
characterize the ground state. When ⌘ ! 0, the system
can be diagonalized using a Schrieffer-Wolff transforma-
tion [10] . We apply the unitary Û = eig
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⌘(â†+â)�̂y to

papier
orig-
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SW?
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(2)
ĤN describes the normal phase of the quantum Rabi

model; it is stable for g < 1. When g ! 1, the system
experience a phase transition towards to so-called super-
radiant phase . In this paper, we will focus on the normalrefref
phase. We diagonalize ĤN by projection in the lower
spin eigenspace and Bogoliubov transformation, and find
the ground state of the Rabi model in the normal phase:

| N i(�,⌦,!0) = Ŝ(⇠)|0i ⌦ |#i+O (
p
⌘) (3)

with ⇠ = �
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1
4 log(1 �
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⌦!0
) and

Ŝ(⇠) = exp{ ⇠
2 (â

†)2� ⇠⇤

2 â} the squeezing operator. The
field squeezing diverges close to the critical point; by
contrast, the fluctuations of the spin are negligible due
to the much larger spin frequency. The excitation energy,
✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the accuracy with which one can
evaluate a quantity A (with A = ⌦ or !0) by measur-
ing this state. This precision is bounded by the quan-
tum Cramer-Rao (CR) bound: �A �

1
p
HA

, where HA

is the Quantum Fisher Information (QFI). Since the sys-refref
tem is in a pure state, HA can be computed exactly as
HA = 4[h@A N |@A N i+ (h@A N | N i)2] . The domi-ref
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nant term of the QFI is:
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(4)

When we approach the critical point g = 1, HA di-
verges, which means we achieve unbounded measure-
ment precision in both measurements. This is consis-
tent with previous studies on critical metrology in light-
matter systems [6]. To verify whether this bound is sat-
urable with practical observables, we have also studied
the Fisher information (FI). We found that the quantum
CR bound can be saturated by performing homodyne
measurements on the field only. We also checked the QFIadd

photon-
number?

add
photon-
number?

in the superradiant phase, and found similar behavior.
Analysis of resources To assess the performances of

our protocols (or any other criticality-based protocol), we

FIG. 1. Left: H⌦ versus g, for ⌦
!0

= 20 (orange), 100 (blue),
and 500 (green). Center: ratio FI/QFI for homodyne measure-
ment of the x̂ quadrature. The Cramer-Rao bound can be at-
tained for all values of g. Right: same, for measurement of
the x̂+p̂p
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equality at the critical point g = 1

need a benchmark. For the estimation of a bosonic fre-
quency !0, it is standard to consider an interferometric
protocol involving a phase difference �� = !0T with
T the evolution time (for optical signals for instance,
this can be done using Fabry-Perot cavities). To en- ref
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sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hN̂i. A lossless interferometric proto-
col have a precision limited by the Heisenberg limit:
H!0 ⇠ hN̂i

2T 2. For the critical protocol, we can read-
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(3). As of the duration of the protocol, the most impor-
tant contribution is the state preparation time: since the
gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means the time needed to reach a point arbi-
trarily close to the transition will diverge. We have con-
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sidered a sweep of g with a (generally time-dependent)
speed v(g) = dg

dt . We found that at any time, the follow-
ing bound should be satisfied to prevent population of the
excited state:

v(g) ⌧
2g

1 + g2
!0(1� g2)3/2 (5)

Thus, the time needed to sweep the coupling constant
from 0 to some value g ⇠ 1 is:

T =
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(6)

Which indeed diverges when g goes to 1. We inject
the expressions for hN̂i and T into (4), and find:

H!0 ⇠ hN̂i
2T 2 (7)

Therefore, the critical protocol allows to estimate !0

with Heisenberg-limited precision. Hence for this es-
timation, adiabatic and interferometric protocols yield
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⌘(â†+â)�̂y to

papier
orig-
inal
SW?

papier
orig-
inal
SW?

(1), which gives:
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verges, which means we achieve unbounded measure-
ment precision in both measurements. This is consis-
tent with previous studies on critical metrology in light-
matter systems [6]. To verify whether this bound is sat-
urable with practical observables, we have also studied
the Fisher information (FI). We found that the quantum
CR bound can be saturated by performing homodyne
measurements on the field only. We also checked the QFIadd
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the evolution time T and the average number of pho-
tons involved hN̂i. A lossless interferometric proto-
col have a precision limited by the Heisenberg limit:
H!0 ⇠ hN̂i

2T 2. For the critical protocol, we can read-

parler
de
l’energie?
<
N2 >
ou <
N >2?

parler
de
l’energie?
<
N2 >
ou <
N >2?

ily compute h N |N̂ | N i = sinh ⇠2 ⇠
1

4
p

1�g2
using

(3). As of the duration of the protocol, the most impor-
tant contribution is the state preparation time: since the
gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means the time needed to reach a point arbi-
trarily close to the transition will diverge. We have con-

ref
adiab
the-
ory

ref
adiab
the-
ory

sidered a sweep of g with a (generally time-dependent)
speed v(g) = dg

dt . We found that at any time, the follow-
ing bound should be satisfied to prevent population of the
excited state:

v(g) ⌧
2g

1 + g2
!0(1� g2)3/2 (5)

Thus, the time needed to sweep the coupling constant
from 0 to some value g ⇠ 1 is:

T =

Z g

0

1

v(g0)
dg0 ⇠

1
p
2!0

1
p
1� g

(6)

Which indeed diverges when g goes to 1. We inject
the expressions for hN̂i and T into (4), and find:

H!0 ⇠ hN̂i
2T 2 (7)

Therefore, the critical protocol allows to estimate !0

with Heisenberg-limited precision. Hence for this es-
timation, adiabatic and interferometric protocols yield

2
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i + âi)(â
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†
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�
(12)

�̂ =
X

µi,j |SiihSj | (13)

µ0,1 ⇡ 0 (14)
g(t) : 0 �! 1 (15)
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FIG. 1. Left: H⌦ versus g, for ⌦/!0 = 20 (orange), 100
(blue), and 500 (green). Center: ratio FI/QFI for homodyne
measurement of the x quadrature. The Cramer-Rao bound can
be attained for all values of g. Right: same, for measurement
of the x+pp
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In turn, the time needed to sweep the coupling constant
from 0 to some value g ' 1 is given by

T =

Z g

0

ds

v(s)
⇠ !�1

0 (1� g)�
1
2 , (6)

which indeed diverges when g goes to 1. Upon inserting
the expressions for hNi and T into (4), we find

H!0 ⇠ hNi
2 T 2 , (7)

i.e., the critical protocol allows one to estimate !0 with
Heisenberg-limited precision (in energy and time). In
other words, adiabatic and interferometric protocols pro-
vide similar performances for the estimation of a bosonic
frequency. Similar results have been obtained for spin
systems [9].

Concerning the estimation of ⌦, a natural benchmark
is given the by Ramsey interferometry with a single spin.
In this case, the relevant resource is the protocol duration
T . For noiseless Ramsey interferometry, QFI scales like

T 2. By contrast, in the critical case, we found using (6)
and (8):

H⌦ '
!4
0

8⌦2
T 4 , (8)

i.e. our protocol achieves quartic scaling in the duration
of the protocol, while Ramsey interferometry only scales
quadratically. To the best of our knowledge, this is the
first unambiguous demonstration of time-scaling advan-
tage for a critical metrological protocol in light-matter
system.

Dissipative process The above results are valid for iso-
lated systems. However, decoherence due the interac-
tion with the environment, generally reduces the perfor-
mances of metrological protocols. In order to assess our
protocol in realistic conditions, let us now consider the
presence of both photon loss and spin decay. The dis-
sipative dynamic of the system is described by a master
equation (ME) of the form

⇢̇ = �i[H, ⇢] + L[a]⇢+ �L[��]⇢ , (9)

where the Lindblad terms read L[A]⇢ = 2A⇢A†
�

(A†A, ⇢). We also assume /!0 = O(1) and �/⌦ =
O(1) [12]. Upon considering the spin-decay term ex-
plicitely and using Schrieffer-Wolff transformation, we
decouple the spin and field, and project the spin into
the |#ih#| subspace. This yields an effective ME for
the bosonic part ⇢̇b = �i[!0a†a � Y (a + a†)2, ⇢b] +
L[a](⇢b) + �/⌦Y L[a+ a†]⇢b +O(!0

p
⌘), with X =

⌦2/(�2 +⌦2) and Y = 1
4!0Xg2. Since this equation is

quadratic in a, it can be solved by a Gaussian ansatz.
The dynamic is then fully characterized by the evolu-
tion equation for the covariance matrix of the state (the
displacement vector decays quickly to zero and may be
safely discarded), i.e. @t� = B� + �BT

� 2(� � �L)
where

B =

✓
0 !0

4Y � !0 0

◆
,

and �L = 1
2 [I + Diag(0, 4Y �/(⌦))]. This linear equa-

tion may be solved exactly by diagonalization. Upon
evaluating the lowest eigenvalue, one may estimate the
typical time needed to reach the steady-state, T '

gc/ (g�gc)�1(1+!2
0/

2)�1. This value diverges near
the transition, indicating a critical slowing down. The
steady-state is a squeezeed (undisplaced) thermal state,
with covariance matrix given by
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i + âi)(â
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�
(12)

�̂ =
X

µi,j |SiihSj | (13)

G⌦ (14)
g(t) : 0 �! 1 (15)
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comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.
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where the leading-order correction adds a quartic potential
for the cavity field. Although HΩ

np is not exactly solvable, a
variational method can be used to derive analytical expect-
ation values [42]. We find that, at the critical point, the
excitation energy vanishes and the characteristic length
scale diverges with a power-law scaling:

ϵgcðΩ=ω0Þ ¼ ω0

!
2Ω
3ω0

"−1=3
;

ΔxgcðΩ=ω0Þ ¼
!
2Ω
3ω0

"
1=6
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In addition, the leading-order correction for eG and nc
are given by eG;gcðΩ=ω0Þ ¼ ðω0=4Þð2Ω=3ω0Þ−4=3 and
nc;gcðΩ=ω0Þ ¼ 1=6ð2Ω=3ω0Þ−2=3. The exponents of these
scaling relations, the finite-frequency scaling exponents,
are found to be the same as the finite-size scaling exponents
of corresponding observable for the Dicke model [46] and
LMG model [47,48], which also have the same critical
exponent z and ν [49,50]. We perform an exact diagonal-
ization of Eq. (1) and show that the numerically obtained
scaling exponents precisely match the analytical results
[Fig. 1(d)].

Universal scaling for adiabatic dynamics.—Having
established the equilibrium QPT of the model, we are
now able to investigate the dynamics of the QPT. We
consider a protocol where the control parameter g is
changed linearly in time, gðtÞ ¼ gft=τq, with gf being
the final value. The system is initially in the ground state.
As gðtÞ approaches the critical point, the vanishing spectral
gap makes the relaxation time of the system diverge,
inevitably creating quasiparticle excitations irrespective
of how large the quench time τq is. Applying KZM
[2,4–11], we define a time instant t̂ that divides the
dynamics into the adiabatic and impulsive regime from
η2ðtÞ ¼ _ηðtÞ, where the accessible energy gap η is given as
η ¼ 2ϵnp for g < gc due to the parity symmetry. From

ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
, we find ĝ ∼ gc − ð4

ffiffiffi
2

p
ω0τqÞ−1=ðzνþ1Þ

[42], where the coupling instant ĝ≡ gðt ¼ t̂Þ moves away
from the critical point as one decreases the quench time
so that the impulsive regime widens. Note that we only
consider gðtÞ ≤ gc for simplicity [34–36].
The wave function at time t can be expressed in terms of

the instantaneous eigenstates of Hnp(gðtÞ); i.e., jΨðtÞi ¼P
mcmðtÞS½rnpðtÞ&jmi. Then, we apply the adiabatic per-

turbation theory [9,34,36] to calculate the residual energy
Er at the end of the quench, which measures the degree
of nonadiabacity, defined as Er ≡ hΨðτqÞjHnp(gðτqÞ)jΨ
ðτqÞi − EG(gðτqÞ). For a protocol that stays in the adiabatic
regime, i.e., gf ≪ ĝ, we obtain a scaling relation, Er ∝ τ−2q
[42], which is a typical scaling for the adiabatic dynamics
with a finite quench time for a gapped Hamiltonian. If the
protocol involves the impulsive regime, gf ∼ ĝ, we find that
the residual energy follows a universal scaling relation,

Er ∝ τ−zν=ðzνþ1Þ
q ; ð7Þ

that is, Er ∝ τ−1=3q since zν ¼ 1=2 [42]. A different way to
predict the universal scaling of Er based on KZM is to use
the dynamical scaling function approach [17], which
expresses the scaling relation in terms of the finite-
frequency scaling exponents. We confirm that it predicts
the same universal scaling relation as in Eq. (7) [42].
For short-range interaction models, the residual energy

due to a slow quench stems from spatial defects in order
parameter across a QPT, whose scaling has been success-
fully predicted by KZM [7,10,11]. However, it is not clear
whether KZM can predict the scaling of the residual energy
in fully connected models due to their lack of spatial
degrees of freedom. In fact, although the same scaling
relation with Eq. (7) has also been predicted for the Dicke
and LMGmodel [17], a numerical calculation with a finite-
size LMG model shows a significant discrepancy with the
universal scaling as it estimates Er ∝ τ−3=2q [16], raising
doubt on the applicability of the KZM to the fully
connected models [17]. Strictly speaking, one has to solve
the dynamics exactly in the thermodynamic limit for the
LMG or Dicke model, or equivalently in the Ω=ω0 → ∞
limit for the Rabi model, to test the validity of the universal

FIG. 1 (color online). Top panel: Exact solutions of the Rabi
model in the Ω=ω0 → ∞ limit as a function of the dimensionless
coupling strength g=gc for (a) the rescaled ground state energy eG
(solid line) and d2eG=d2g (red dashed line), (b) the excitation
energy ϵ (solid line) and the energy difference between the ground
and the first excited state (red dashed line) showing the ground
state degeneracy for g=gc ≥ 1, and (c) the variance of position Δx
(solid line) and momentum Δp (red dashed line) quadrature of the
cavity field, and ΔxΔp (dotted line). In (b) and (c), the scaling
relation near the critical point is indicated. Bottom panel: A
leading-order correction for finite Ω=ω0 at g ¼ gc for Δp, ϵ,
the order parameter nc, and eG from top to bottom, respectively.
The analytical results (lines) predict precisely the exact diagonal-
ization results (points) for all observables. The finite-frequency
scaling exponents for each observable are indicated.
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, we find ĝ ∼ gc − ð4

ffiffiffi
2

p
ω0τqÞ−1=ðzνþ1Þ

[42], where the coupling instant ĝ≡ gðt ¼ t̂Þ moves away
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consider gðtÞ ≤ gc for simplicity [34–36].
The wave function at time t can be expressed in terms of
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that is, Er ∝ τ−1=3q since zν ¼ 1=2 [42]. A different way to
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the dynamical scaling function approach [17], which
expresses the scaling relation in terms of the finite-
frequency scaling exponents. We confirm that it predicts
the same universal scaling relation as in Eq. (7) [42].
For short-range interaction models, the residual energy

due to a slow quench stems from spatial defects in order
parameter across a QPT, whose scaling has been success-
fully predicted by KZM [7,10,11]. However, it is not clear
whether KZM can predict the scaling of the residual energy
in fully connected models due to their lack of spatial
degrees of freedom. In fact, although the same scaling
relation with Eq. (7) has also been predicted for the Dicke
and LMGmodel [17], a numerical calculation with a finite-
size LMG model shows a significant discrepancy with the
universal scaling as it estimates Er ∝ τ−3=2q [16], raising
doubt on the applicability of the KZM to the fully
connected models [17]. Strictly speaking, one has to solve
the dynamics exactly in the thermodynamic limit for the
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1Departamento de Fı́sica Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC),
Universidad Autónoma de Madrid, E- 28049 Madrid, Spain
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We identify universal properties of the low-energy subspace of a wide class of quantum optical models in the
ultrastrong coupling limit, where the coupling strength dominates over all other energy scales in the system. We
show that the symmetry of the light-matter interaction is at the origin of a two-fold degeneracy in the spectrum.
We prove analytically this result for bounded Hamiltonians and extend it to a class of models with unbounded
operators. As a consequence, we show that the emergence of superradiant phases previously investigated in the
context of critical phenomena, is a general property of the ultrastrong coupling limit. The set of models we
consider encompasses different scenarios of possible interplay between critical behaviour and superradiance.

The experimental control of the coherent interaction be-
tween light and matter is one of the corner stones of the recent
developments in the field of quantum technologies. Experi-
ments in cavity quantum electrodynamics (cavity QED) have
been essential both for our understanding of quantum-optical
phenomena at the most fundamental level [1, 2] and for the
implementation of quantum information protocols [3, 4]. A
decisive challenge in cavity QED experiments consists in in-
creasing the strength of the coupling between light and matter.
In this respect, two main milestones have been reached, each
of them leading to new features and potentially new techno-
logical functionalities [5]. A key step was the achievement
of the strong coupling regime, where the coupling strength is
larger than any dissipation rate. This regime has been demon-
strated in atomic cavity QED [6], semiconductor nanostruc-
tures [7, 8] and superconducting circuits [9], leading to the
observation of genuine quantum effects such as vacuum Rabi
oscillations and photon antibunching [10–13, 20].

In the last decade, we entered in a new era of cavity QED
with the achievement [14–19] of the ultrastrong coupling
(USC) regime, where the coupling strength becomes compa-
rable or even larger than the cavity frequency [21–23]. Fur-
thermore, recently developed quantum simulation techniques
made it possible to observe [24–27] the physics of the ul-
trastrong coupling regime even in systems that do not natu-
rally achieve the required interaction strength. The rich phe-
nomenology of this new regime of cavity QED has been the
focus of an intense research activity. The USC regime proved
to induce profound modifications in a variety of fundamen-
tal quantum optical phenomena, ranging from vacuum radi-
ation [28, 29] to single-photon emission [30, 31], scattering
processes [32] and transport properties [33, 34]. Among its
prominent features, it was also recognized that some sys-
tems exhibit a two-fold degenerate ground state in the USC
regime [35–37]. It was proposed to exploit this interesting
feature for the design of protected qubits [38–40].

Ultrastrong light-matter interactions in cavity QED may
also give rise to superradiant phase transitions (SPT) [41, 42].
From a theoretical point of view, the Dicke model is a paradig-
matic example in which such a phase transition occurs in the
thermodynamic limit, when the number of atoms coupled to
the cavity mode is going to infinity [43]. More recently, a

SPT have been predicted to occur also in the quantum Rabi
model [44–46], which is a finite-component model. In finite-
component models the thermodynamic limit can be defined
formally by letting one parameter of the Hamiltonian go to
infinity. In addition to a macroscopic number of photons in
the ground state, the superradiant phase is in both cases char-
acterized by a two-fold degeneracy of the low-energy eigen-
states and a breaking of the parity symmetry. Note that viola-
tion of gauge invariance [47–49] and the role of the usually-
neglected diamagnetic “A2-term” [50–53] can constrain the
validity of effective models in the USC regime. Nevertheless,
Hamiltonian engineering via parametric couplings or analog
quantum simulation schemes makes it possible to observe su-
perradiant phase transitions and to feasibly explore extreme
regimes of parameters.

In this letter, we show that two-fold degeneracy and parity-
symmetry breaking are universal properties of quantum opti-
cal models in the ultrastrong coupling limit, where the cou-
pling strength dominates over all other energy scales. We give
a general proof of this result in the case of bounded Hamilto-
nians and extend it to a set of models with unbounded opera-
tors. The class of Hamiltonians we consider includes coupled
non-linear oscillators, such as Bose-Hubbard chains, which
are relevant for a wide class of experimental platforms. We
show that in such bosonic systems a superradiant phase al-
ways emerges in the ultrastrong coupling limit, whether in the
form of a crossover or a phase transition. In particular, the
phenomenology of the SPT occurring in both the Rabi and
Dicke models is recovered by introducing proper scalings of
the parameters. Finally, we show that a novel interplay be-
tween critical behavior and supperradiance can emerge in the
ultrastrong coupling limit.

Bounded operators When the Hamiltonian is bounded,
the proof of the result mentioned above is straightforward but
the intuition it provides is nonetheless useful. Consider the
Hilbert space H = H1⌦H2 of two coupled parity-conserving
systems, with the following total Hamiltonian

H = H1 + H2 + gHI . (1)

Local parity conservation is expressed as [P1, H1] =
[P2, H2] = 0. A key point is the symmetry properties of the
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⌘(â†+â)�̂y to

papier
orig-
inal
SW?

papier
orig-
inal
SW?

(1), which gives:
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†â+⌦�̂z+

!0g2�̂z
2

�
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model; it is stable for g < 1. When g ! 1, the system
experience a phase transition towards to so-called super-
radiant phase . In this paper, we will focus on the normalrefref
phase. We diagonalize ĤN by projection in the lower
spin eigenspace and Bogoliubov transformation, and find
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| N i(�,⌦,!0) = Ŝ(⇠)|0i ⌦ |#i+O (
p
⌘) (3)

with ⇠ = �
1
4 log(1 � g2) = �

1
4 log(1 �

�2

⌦!0
) and
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We are interested in the accuracy with which one can
evaluate a quantity A (with A = ⌦ or !0) by measur-
ing this state. This precision is bounded by the quan-
tum Cramer-Rao (CR) bound: �A �
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When we approach the critical point g = 1, HA di-
verges, which means we achieve unbounded measure-
ment precision in both measurements. This is consis-
tent with previous studies on critical metrology in light-
matter systems [6]. To verify whether this bound is sat-
urable with practical observables, we have also studied
the Fisher information (FI). We found that the quantum
CR bound can be saturated by performing homodyne
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in the superradiant phase, and found similar behavior.
Analysis of resources To assess the performances of
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and 500 (green). Center: ratio FI/QFI for homodyne measure-
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tained for all values of g. Right: same, for measurement of
the x̂+p̂p
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Which indeed diverges when g goes to 1. We inject
the expressions for hN̂i and T into (4), and find:
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Therefore, the critical protocol allows to estimate !0

with Heisenberg-limited precision. Hence for this es-
timation, adiabatic and interferometric protocols yield
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model; it is stable for g < 1. When g ! 1, the system
experience a phase transition towards to so-called super-
radiant phase . In this paper, we will focus on the normalrefref
phase. We diagonalize ĤN by projection in the lower
spin eigenspace and Bogoliubov transformation, and find
the ground state of the Rabi model in the normal phase:

| N i(�,⌦,!0) = Ŝ(⇠)|0i ⌦ |#i+O (
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⌘) (3)

with ⇠ = �
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4 log(1 �
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) and

Ŝ(⇠) = exp{ ⇠
2 (â
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2 â} the squeezing operator. The
field squeezing diverges close to the critical point; by
contrast, the fluctuations of the spin are negligible due
to the much larger spin frequency. The excitation energy,
✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the accuracy with which one can
evaluate a quantity A (with A = ⌦ or !0) by measur-
ing this state. This precision is bounded by the quan-
tum Cramer-Rao (CR) bound: �A �

1
p
HA

, where HA

is the Quantum Fisher Information (QFI). Since the sys-refref
tem is in a pure state, HA can be computed exactly as
HA = 4[h@A N |@A N i+ (h@A N | N i)2] . The domi-ref
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nant term of the QFI is:

HA ⇠
1

32A2(1� g)2
(4)

When we approach the critical point g = 1, HA di-
verges, which means we achieve unbounded measure-
ment precision in both measurements. This is consis-
tent with previous studies on critical metrology in light-
matter systems [6]. To verify whether this bound is sat-
urable with practical observables, we have also studied
the Fisher information (FI). We found that the quantum
CR bound can be saturated by performing homodyne
measurements on the field only. We also checked the QFIadd

photon-
number?

add
photon-
number?

in the superradiant phase, and found similar behavior.
Analysis of resources To assess the performances of

our protocols (or any other criticality-based protocol), we

FIG. 1. Left: H⌦ versus g, for ⌦
!0

= 20 (orange), 100 (blue),
and 500 (green). Center: ratio FI/QFI for homodyne measure-
ment of the x̂ quadrature. The Cramer-Rao bound can be at-
tained for all values of g. Right: same, for measurement of
the x̂+p̂p
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equality at the critical point g = 1

need a benchmark. For the estimation of a bosonic fre-
quency !0, it is standard to consider an interferometric
protocol involving a phase difference �� = !0T with
T the evolution time (for optical signals for instance,
this can be done using Fabry-Perot cavities). To en- ref
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sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hN̂i. A lossless interferometric proto-
col have a precision limited by the Heisenberg limit:
H!0 ⇠ hN̂i

2T 2. For the critical protocol, we can read-
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ily compute h N |N̂ | N i = sinh ⇠2 ⇠
1

4
p

1�g2
using

(3). As of the duration of the protocol, the most impor-
tant contribution is the state preparation time: since the
gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means the time needed to reach a point arbi-
trarily close to the transition will diverge. We have con-

ref
adiab
the-
ory

ref
adiab
the-
ory

sidered a sweep of g with a (generally time-dependent)
speed v(g) = dg

dt . We found that at any time, the follow-
ing bound should be satisfied to prevent population of the
excited state:

v(g) ⌧
2g

1 + g2
!0(1� g2)3/2 (5)

Thus, the time needed to sweep the coupling constant
from 0 to some value g ⇠ 1 is:

T =

Z g

0

1

v(g0)
dg0 ⇠

1
p
2!0

1
p
1� g

(6)

Which indeed diverges when g goes to 1. We inject
the expressions for hN̂i and T into (4), and find:

H!0 ⇠ hN̂i
2T 2 (7)

Therefore, the critical protocol allows to estimate !0

with Heisenberg-limited precision. Hence for this es-
timation, adiabatic and interferometric protocols yield
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FIG. 1. Left: H⌦ versus g, for ⌦/!0 = 20 (orange), 100
(blue), and 500 (green). Center: ratio FI/QFI for homodyne
measurement of the x quadrature. The Cramer-Rao bound can
be attained for all values of g. Right: same, for measurement
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In turn, the time needed to sweep the coupling constant
from 0 to some value g ' 1 is given by

T =

Z g

0

ds

v(s)
⇠ !�1

0 (1� g)�
1
2 , (6)

which indeed diverges when g goes to 1. Upon inserting
the expressions for hNi and T into (4), we find

H!0 ⇠ hNi
2 T 2 , (7)

i.e., the critical protocol allows one to estimate !0 with
Heisenberg-limited precision (in energy and time). In
other words, adiabatic and interferometric protocols pro-
vide similar performances for the estimation of a bosonic
frequency. Similar results have been obtained for spin
systems [9].

Concerning the estimation of ⌦, a natural benchmark
is given the by Ramsey interferometry with a single spin.
In this case, the relevant resource is the protocol duration
T . For noiseless Ramsey interferometry, QFI scales like

T 2. By contrast, in the critical case, we found using (6)
and (8):

H⌦ '
!4
0

8⌦2
T 4 , (8)

i.e. our protocol achieves quartic scaling in the duration
of the protocol, while Ramsey interferometry only scales
quadratically. To the best of our knowledge, this is the
first unambiguous demonstration of time-scaling advan-
tage for a critical metrological protocol in light-matter
system.

Dissipative process The above results are valid for iso-
lated systems. However, decoherence due the interac-
tion with the environment, generally reduces the perfor-
mances of metrological protocols. In order to assess our
protocol in realistic conditions, let us now consider the
presence of both photon loss and spin decay. The dis-
sipative dynamic of the system is described by a master
equation (ME) of the form

⇢̇ = �i[H, ⇢] + L[a]⇢+ �L[��]⇢ , (9)

where the Lindblad terms read L[A]⇢ = 2A⇢A†
�

(A†A, ⇢). We also assume /!0 = O(1) and �/⌦ =
O(1) [12]. Upon considering the spin-decay term ex-
plicitely and using Schrieffer-Wolff transformation, we
decouple the spin and field, and project the spin into
the |#ih#| subspace. This yields an effective ME for
the bosonic part ⇢̇b = �i[!0a†a � Y (a + a†)2, ⇢b] +
L[a](⇢b) + �/⌦Y L[a+ a†]⇢b +O(!0

p
⌘), with X =

⌦2/(�2 +⌦2) and Y = 1
4!0Xg2. Since this equation is

quadratic in a, it can be solved by a Gaussian ansatz.
The dynamic is then fully characterized by the evolu-
tion equation for the covariance matrix of the state (the
displacement vector decays quickly to zero and may be
safely discarded), i.e. @t� = B� + �BT

� 2(� � �L)
where
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✓
0 !0

4Y � !0 0

◆
,

and �L = 1
2 [I + Diag(0, 4Y �/(⌦))]. This linear equa-

tion may be solved exactly by diagonalization. Upon
evaluating the lowest eigenvalue, one may estimate the
typical time needed to reach the steady-state, T '

gc/ (g�gc)�1(1+!2
0/

2)�1. This value diverges near
the transition, indicating a critical slowing down. The
steady-state is a squeezeed (undisplaced) thermal state,
with covariance matrix given by
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†â + g�̂

�
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1

comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +

1

2
!0g

2�z
�
a+ a†

�2
, (2)

up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
⌘
�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a

†)2 � ⇠⇤

2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp

2
one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
4 (1�g2)�

1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)
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comparison with relevant benchmark protocols, we ex-
plicitely take into account the time needed to prepare
the ground state, and show that for spin frequency es-
timation, our protocol exhibits time-scaling advantage
with respect to the paradigmatic Ramsey protocol. For
bosonic frequency estimation, our protocol saturates the
Heisenberg limit.

Protocol Let us consider a spin interacting with a sin-
gle bosonic mode according to the Rabi Hamiltonian:

H = !0 a
†a+ ⌦�z + �

�
a† + a

�
�x (1)

where !0 is the frequency of the bosonic field, a and a†

are creation and annihilation operators of the field, �x
and �y are Pauli matrices associated with the spin, and
� is the coupling parameter. We also define the renor-
malized coupling parameter g = �/

p
⌦!0. In the limit

⌘ = !0/⌦ ! 0, this system exhibits a phase transition
at g = 1 [10, 11]. Here we study if the critical sensitiv-
ity of the system can be leveraged to accurately estimate
both the frequency of the spin ⌦ and the field frequency
!0. We suggest the following three-steps protocol: first,
we prepare the system in its ground state by adiabati-
cally sweeping g from 0 to some desired value close to
the critical point g = 1. Next, we perform measurements
on the field and/or the spin. Finally, we use the mea-
surement results to infer either ⌦ (when !0 is known) or
!0 (when ⌦ is known). In order to evaluate the perfor-
mances of these protocols, we need first to characterize
the ground state. When ⌘ ! 0, the system can be diago-
nalized using a Schrieffer-Wolff transformation [10]. We
apply the unitary U = eig

p
⌘(a†+a)�y to (1), which gives

HN = UHU †

HN = !0a
†a+ ⌦�z +
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up to terms O(!0
p
⌘). HN describes the normal phase

of the model. It is stable for g < 1, whereas for g ! 1
the system experiences a phase transition towards to so-
called superradiant phase. In this paper, we are going to
focus on the normal phase and we diagonalize HN by
projection in the lower spin eigenspace and Bogoliubov
transformation. The ground state is given by

| N i(�,⌦,!0) = S(⇠)|0i ⌦ |#i (3)

up to terms O
�p
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�
. In Eq. (3) ⇠ = �

1
4 log(1 � g2)

and S(⇠) = exp{ ⇠
2 (a
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2 a} is the squeezing oper-
ator. The field squeezing diverges at the critical point,
whereas the spin fluctuations are negligible, due to the
much larger spin frequency. In turn, the excitation en-
ergy, ✏N = !0

p
1� g2, vanishes at the transition.

We are interested in the precise estimation of A (with
A = ⌦ or !0) obtained by performing measurements
on the ground state of the system. This precision
is bounded by the quantum Cramer-Rao (CR) bound:
�2A � H

�1
A , where HA is the Quantum Fisher Infor-

mation (QFI). Since the system is in a pure state, the QFI
may be computed exactly as HA = 4[h@A N |@A N i +
(h@A N | N i)2]. The dominant term of the QFI is:

HA '
1

32A2(1� g)2
, (4)

meaning that the signal-to-noise ratio QA = A2
HA is

bounded by a parameter-independent value. Eq. (4)
shows that HA diverges at the critical point, i.e. one may
achieve arbitrary precision. This is consistent with previ-
ous studies on critical metrology in light-matter systems
[3]. To verify whether this bound is saturable with practi-
cal observables, we have also studied the Fisher informa-
tion (FI) of a feasible measurement, i.e. homodyne de-
tection on the field only. We also checked the QFI in the
superradiant phase, and found a similar behavior. This is
illustrated in Fig. , where we show H⌦ versus g for dif-
ferent values of the ratio ⌦/!0 = 20 (left panel), and the
ratio FI/QFI for homodyne detection of the x quadrature
(center panel) and the x+pp
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one (right panel).

Analysis of resources In order to assess the per-
formances of our protocols (and, in turn, any other
criticality-based protocol), we need a benchmark. For
the estimation of the bosonic frequency !0, this is pro-
vided by interferometric protocols involving a phase dif-
ference�� = !0 T where T is the evolution time within
the interferometer (e.g. a Fabry-Perot cavity). To en-
sure a fair comparison, we must carefully account for
the resources needed to implement the critical and in-
terferometric protocols. The relevant quantities here are
the evolution time T and the average number of pho-
tons involved hNi. A lossless interferometric protocol
have a precision limited by the Heisenberg limit H!0 ⇠

hNi
2 T 2. For the critical protocol, we can readily com-

pute hNi using Eq. (3) as h N |N | N i = sinh ⇠2 '

1
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1
2 . As of the duration of the protocol, the most

important contribution is the state preparation time: since
the gap closes at the critical point, the adiabatic evolution
speed needs to be reduced in order to get closer to this
point. This means that the time needed to reach a point
arbitrarily close to the transition diverges. Upon con-
sidering a sweep of g with a (generally time-dependent)
speed v(g) = dg/dt, the following inequality should be
satisfied to prevent population of the excited state:

v(g) ⌧
2g

1 + g2
!0 (1� g2)3/2 . (5)

2

(from time-dependent perturbation theory)

Adiabatic
evolution

Critical scaling
Evolution

time

FIG. 1. Left: H⌦ versus g, for ⌦/!0 = 20 (orange), 100
(blue), and 500 (green). Center: ratio FI/QFI for homodyne
measurement of the x quadrature. The Cramer-Rao bound can
be attained for all values of g. Right: same, for measurement
of the x+pp
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In turn, the time needed to sweep the coupling constant
from 0 to some value g ' 1 is given by

T =

Z g

0

ds

v(s)
⇠ !�1

0 (1� g)�
1
2 , (6)

which indeed diverges when g goes to 1. Upon inserting
the expressions for hNi and T into (4), we find

H!0 ⇠ hNi
2 T 2 , (7)

i.e., the critical protocol allows one to estimate !0 with
Heisenberg-limited precision (in energy and time). In
other words, adiabatic and interferometric protocols pro-
vide similar performances for the estimation of a bosonic
frequency. Similar results have been obtained for spin
systems [9].

Concerning the estimation of ⌦, a natural benchmark
is given the by Ramsey interferometry with a single spin.
In this case, the relevant resource is the protocol duration
T . For noiseless Ramsey interferometry, QFI scales like

T 2. By contrast, in the critical case, we found using (6)
and (8):

H⌦ '
!4
0

8⌦2
T 4 , (8)

i.e. our protocol achieves quartic scaling in the duration
of the protocol, while Ramsey interferometry only scales
quadratically. To the best of our knowledge, this is the
first unambiguous demonstration of time-scaling advan-
tage for a critical metrological protocol in light-matter
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tion with the environment, generally reduces the perfor-
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Ĥ = Ĥm + !câ
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where the leading-order correction adds a quartic potential
for the cavity field. Although HΩ

np is not exactly solvable, a
variational method can be used to derive analytical expect-
ation values [42]. We find that, at the critical point, the
excitation energy vanishes and the characteristic length
scale diverges with a power-law scaling:

ϵgcðΩ=ω0Þ ¼ ω0

!
2Ω
3ω0

"−1=3
;

ΔxgcðΩ=ω0Þ ¼
!
2Ω
3ω0

"
1=6

: ð6Þ

In addition, the leading-order correction for eG and nc
are given by eG;gcðΩ=ω0Þ ¼ ðω0=4Þð2Ω=3ω0Þ−4=3 and
nc;gcðΩ=ω0Þ ¼ 1=6ð2Ω=3ω0Þ−2=3. The exponents of these
scaling relations, the finite-frequency scaling exponents,
are found to be the same as the finite-size scaling exponents
of corresponding observable for the Dicke model [46] and
LMG model [47,48], which also have the same critical
exponent z and ν [49,50]. We perform an exact diagonal-
ization of Eq. (1) and show that the numerically obtained
scaling exponents precisely match the analytical results
[Fig. 1(d)].

Universal scaling for adiabatic dynamics.—Having
established the equilibrium QPT of the model, we are
now able to investigate the dynamics of the QPT. We
consider a protocol where the control parameter g is
changed linearly in time, gðtÞ ¼ gft=τq, with gf being
the final value. The system is initially in the ground state.
As gðtÞ approaches the critical point, the vanishing spectral
gap makes the relaxation time of the system diverge,
inevitably creating quasiparticle excitations irrespective
of how large the quench time τq is. Applying KZM
[2,4–11], we define a time instant t̂ that divides the
dynamics into the adiabatic and impulsive regime from
η2ðtÞ ¼ _ηðtÞ, where the accessible energy gap η is given as
η ¼ 2ϵnp for g < gc due to the parity symmetry. From

ϵnp ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
, we find ĝ ∼ gc − ð4

ffiffiffi
2

p
ω0τqÞ−1=ðzνþ1Þ

[42], where the coupling instant ĝ≡ gðt ¼ t̂Þ moves away
from the critical point as one decreases the quench time
so that the impulsive regime widens. Note that we only
consider gðtÞ ≤ gc for simplicity [34–36].
The wave function at time t can be expressed in terms of

the instantaneous eigenstates of Hnp(gðtÞ); i.e., jΨðtÞi ¼P
mcmðtÞS½rnpðtÞ&jmi. Then, we apply the adiabatic per-

turbation theory [9,34,36] to calculate the residual energy
Er at the end of the quench, which measures the degree
of nonadiabacity, defined as Er ≡ hΨðτqÞjHnp(gðτqÞ)jΨ
ðτqÞi − EG(gðτqÞ). For a protocol that stays in the adiabatic
regime, i.e., gf ≪ ĝ, we obtain a scaling relation, Er ∝ τ−2q
[42], which is a typical scaling for the adiabatic dynamics
with a finite quench time for a gapped Hamiltonian. If the
protocol involves the impulsive regime, gf ∼ ĝ, we find that
the residual energy follows a universal scaling relation,

Er ∝ τ−zν=ðzνþ1Þ
q ; ð7Þ

that is, Er ∝ τ−1=3q since zν ¼ 1=2 [42]. A different way to
predict the universal scaling of Er based on KZM is to use
the dynamical scaling function approach [17], which
expresses the scaling relation in terms of the finite-
frequency scaling exponents. We confirm that it predicts
the same universal scaling relation as in Eq. (7) [42].
For short-range interaction models, the residual energy

due to a slow quench stems from spatial defects in order
parameter across a QPT, whose scaling has been success-
fully predicted by KZM [7,10,11]. However, it is not clear
whether KZM can predict the scaling of the residual energy
in fully connected models due to their lack of spatial
degrees of freedom. In fact, although the same scaling
relation with Eq. (7) has also been predicted for the Dicke
and LMGmodel [17], a numerical calculation with a finite-
size LMG model shows a significant discrepancy with the
universal scaling as it estimates Er ∝ τ−3=2q [16], raising
doubt on the applicability of the KZM to the fully
connected models [17]. Strictly speaking, one has to solve
the dynamics exactly in the thermodynamic limit for the
LMG or Dicke model, or equivalently in the Ω=ω0 → ∞
limit for the Rabi model, to test the validity of the universal

FIG. 1 (color online). Top panel: Exact solutions of the Rabi
model in the Ω=ω0 → ∞ limit as a function of the dimensionless
coupling strength g=gc for (a) the rescaled ground state energy eG
(solid line) and d2eG=d2g (red dashed line), (b) the excitation
energy ϵ (solid line) and the energy difference between the ground
and the first excited state (red dashed line) showing the ground
state degeneracy for g=gc ≥ 1, and (c) the variance of position Δx
(solid line) and momentum Δp (red dashed line) quadrature of the
cavity field, and ΔxΔp (dotted line). In (b) and (c), the scaling
relation near the critical point is indicated. Bottom panel: A
leading-order correction for finite Ω=ω0 at g ¼ gc for Δp, ϵ,
the order parameter nc, and eG from top to bottom, respectively.
The analytical results (lines) predict precisely the exact diagonal-
ization results (points) for all observables. The finite-frequency
scaling exponents for each observable are indicated.
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As gðtÞ approaches the critical point, the vanishing spectral
gap makes the relaxation time of the system diverge,
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from the critical point as one decreases the quench time
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the dynamical scaling function approach [17], which
expresses the scaling relation in terms of the finite-
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the same universal scaling relation as in Eq. (7) [42].
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size LMG model shows a significant discrepancy with the
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We identify universal properties of the low-energy subspace of a wide class of quantum optical models in the
ultrastrong coupling limit, where the coupling strength dominates over all other energy scales in the system. We
show that the symmetry of the light-matter interaction is at the origin of a two-fold degeneracy in the spectrum.
We prove analytically this result for bounded Hamiltonians and extend it to a class of models with unbounded
operators. As a consequence, we show that the emergence of superradiant phases previously investigated in the
context of critical phenomena, is a general property of the ultrastrong coupling limit. The set of models we
consider encompasses different scenarios of possible interplay between critical behaviour and superradiance.

The experimental control of the coherent interaction be-
tween light and matter is one of the corner stones of the recent
developments in the field of quantum technologies. Experi-
ments in cavity quantum electrodynamics (cavity QED) have
been essential both for our understanding of quantum-optical
phenomena at the most fundamental level [1, 2] and for the
implementation of quantum information protocols [3, 4]. A
decisive challenge in cavity QED experiments consists in in-
creasing the strength of the coupling between light and matter.
In this respect, two main milestones have been reached, each
of them leading to new features and potentially new techno-
logical functionalities [5]. A key step was the achievement
of the strong coupling regime, where the coupling strength is
larger than any dissipation rate. This regime has been demon-
strated in atomic cavity QED [6], semiconductor nanostruc-
tures [7, 8] and superconducting circuits [9], leading to the
observation of genuine quantum effects such as vacuum Rabi
oscillations and photon antibunching [10–13, 20].

In the last decade, we entered in a new era of cavity QED
with the achievement [14–19] of the ultrastrong coupling
(USC) regime, where the coupling strength becomes compa-
rable or even larger than the cavity frequency [21–23]. Fur-
thermore, recently developed quantum simulation techniques
made it possible to observe [24–27] the physics of the ul-
trastrong coupling regime even in systems that do not natu-
rally achieve the required interaction strength. The rich phe-
nomenology of this new regime of cavity QED has been the
focus of an intense research activity. The USC regime proved
to induce profound modifications in a variety of fundamen-
tal quantum optical phenomena, ranging from vacuum radi-
ation [28, 29] to single-photon emission [30, 31], scattering
processes [32] and transport properties [33, 34]. Among its
prominent features, it was also recognized that some sys-
tems exhibit a two-fold degenerate ground state in the USC
regime [35–37]. It was proposed to exploit this interesting
feature for the design of protected qubits [38–40].

Ultrastrong light-matter interactions in cavity QED may
also give rise to superradiant phase transitions (SPT) [41, 42].
From a theoretical point of view, the Dicke model is a paradig-
matic example in which such a phase transition occurs in the
thermodynamic limit, when the number of atoms coupled to
the cavity mode is going to infinity [43]. More recently, a

SPT have been predicted to occur also in the quantum Rabi
model [44–46], which is a finite-component model. In finite-
component models the thermodynamic limit can be defined
formally by letting one parameter of the Hamiltonian go to
infinity. In addition to a macroscopic number of photons in
the ground state, the superradiant phase is in both cases char-
acterized by a two-fold degeneracy of the low-energy eigen-
states and a breaking of the parity symmetry. Note that viola-
tion of gauge invariance [47–49] and the role of the usually-
neglected diamagnetic “A2-term” [50–53] can constrain the
validity of effective models in the USC regime. Nevertheless,
Hamiltonian engineering via parametric couplings or analog
quantum simulation schemes makes it possible to observe su-
perradiant phase transitions and to feasibly explore extreme
regimes of parameters.

In this letter, we show that two-fold degeneracy and parity-
symmetry breaking are universal properties of quantum opti-
cal models in the ultrastrong coupling limit, where the cou-
pling strength dominates over all other energy scales. We give
a general proof of this result in the case of bounded Hamilto-
nians and extend it to a set of models with unbounded opera-
tors. The class of Hamiltonians we consider includes coupled
non-linear oscillators, such as Bose-Hubbard chains, which
are relevant for a wide class of experimental platforms. We
show that in such bosonic systems a superradiant phase al-
ways emerges in the ultrastrong coupling limit, whether in the
form of a crossover or a phase transition. In particular, the
phenomenology of the SPT occurring in both the Rabi and
Dicke models is recovered by introducing proper scalings of
the parameters. Finally, we show that a novel interplay be-
tween critical behavior and supperradiance can emerge in the
ultrastrong coupling limit.

Bounded operators When the Hamiltonian is bounded,
the proof of the result mentioned above is straightforward but
the intuition it provides is nonetheless useful. Consider the
Hilbert space H = H1⌦H2 of two coupled parity-conserving
systems, with the following total Hamiltonian

H = H1 + H2 + gHI . (1)

Local parity conservation is expressed as [P1, H1] =
[P2, H2] = 0. A key point is the symmetry properties of the
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†
i + âi)(â
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Ĥ = Ĥm + !câ
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�
(12)

�̂ =
X

µi,j |SiihSj | (13)

G⌦ (14)
g(t) : 0 �! 1 (15)
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i + âi)(â
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�B =
1p
GB

(2)

GB ⇠ t
2
N

2 (3)
N ! 1 (4)

G� ⇠ 1

(�� �c)
2 (5)

|.i ⌦D�↵S�|0i+ |&i ⌦D↵S�|0i (6)
� > �c 0 (7)

H =
NX

i=1

⇣
!iâ
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†
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⌘
+
X

i>j

�i,j(â
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i + âi)(â
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†
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†
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j + âj), (8)

+H
t
I (9)

1
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Quantum Rabi model
Nonlinear quantum resonators

Take place in driven-dissipative systems

- N. Bartolo, F. Minganti, W. Casteels, and C. Ciuti, Phys. Rev. A 94, 033841 (2016).
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FIG. 1. A sketch of the considered class of systems. The
picture represents a photon resonator subject to one-photon
losses with rate �, and coherently driven by a one-photon
pump of amplitude F . The resonator is also subject to a
coherent two-photon driving of amplitude G and two-photon
losses with rate ⌘. The strength of the photon-photon inter-
action is quantified by U . On the right, we sketch the e↵ects
of these physical processes on the Fock (number) states |ni.

we get (~ = 1)

Ĥ0 = !c â†â +
U

2
â†â†ââ, (1)

where â and â† are, respectively, the annihilation and
creation operator for photons inside the resonator. A
coherent drive with amplitude F and frequency !p can
be described by

Ĥ1ph = F e�i!ptâ† + F ⇤ ei!ptâ. (2)

From now on we will denote this mechanism as one-
photon pumping. Similarly, a parametric process coher-
ently adding photons pairwise is described by

Ĥ2ph =
G

2
e�i!2tâ†â† +

G⇤

2
ei!2tââ, (3)

where G is the pump amplitude and !2 its frequency.
Such a two-photon pumping mechanism can be obtained
by engineering the exchange of photons between the cav-
ity and the environment. Recently, this has been realized
by coupling two superconducting resonators via a Joseph-
son junction [14]. In order to get a time-independent
Hamiltonian, we consider !2 = 2!p. Hence, we use the

unitary transformation Û = e�i!ptâ
†â, which removes the

time-dependence from the Hamiltonian. This allows us
to describe the system in the reference frame rotating at
the coherent pump frequency !p. The full Hamiltonian,
hence, becomes

Ĥ = � �â†â +
U

2
â†â†ââ

+ F â† + F ⇤â +
G

2
â†â† +

G⇤

2
ââ, (4)

where � = !p �!c is the pump-cavity detuning. For the
considered system, photon losses are typically apprecia-
ble and can not be neglected [33]. The Markov-Born ap-
proximation gives an excellent description of these losses

in terms of a Lindblad dissipation super-operator D(Ĉ)
of the form [33, 34]

D(Ĉ) ⇢̂ = 2 Ĉ ⇢̂ Ĉ
†
� Ĉ

†
Ĉ ⇢̂ � ⇢̂ Ĉ

†
Ĉ, (5)

where Ĉ is the quantum jump operator corresponding
to the specific dissipation process. Usually, photons are
lost individually to the environment and the jump oper-
ator is the annihilation operator â [33]. In addition, we
also consider two-photon losses, which naturally emerge
together with the engineered two-photon pumping [14].
These losses are included through the jump operator â2.
The resulting Lindblad master equation describing the
evolution of the the system density matrix ⇢̂ is

i
@⇢̂
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=

h
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i
+ i

�

2
D(â) ⇢̂ + i

⌘

2
D(â2) ⇢̂, (6)

where � and ⌘ are, respectively, the one- and two-photon
dissipation rates and Ĥ is the one given in Eq. (4).

III. P -REPRESENTATION AND EXACT
SOLUTION FOR THE STEADY STATE

The steady-state properties are of central interest
in the context of out-of-equilibrium quantum systems.
These properties are encoded in the steady-state den-
sity matrix, which is the solution of Eq. (6) for @t⇢̂ = 0.
To this purpose, we consider the P -representation of the
density matrix, i.e. we decompose ⇢̂ using the over-
complete basis of coherent states |↵i, such that â |↵i =
↵ |↵i. We use the complex P -representation P (↵, �) [35],
which is defined by

⇢̂ =
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d�

|↵i h�⇤
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P (↵, �), (7)

where the closed integration contours C and C
0 must be

carefully chosen to encircle all the singularities of the
function P (↵, �). Once the definition (7) is inserted in
Eq. (6), the action of the annihilation and creation opera-
tors on the projector |↵ih�⇤

| allows one to map the mas-
ter equation for ⇢̂ into a complex Fokker-Planck equa-
tion for P (↵, �). Further details on this procedure are
presented in appendix A. For the case G = 0, the com-
plex P -representation solution for the steady state was
derived by Drummond and Walls [15], and is given by

Pss(↵, �) / e2↵�
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. (8)

In Eq. (8), the system parameters are resumed by the
dimensionless quantities c = (� + i�/2)/(U � i⌘) and
f = F/(U � i⌘). For the general case corresponding to
the master equation (6), we find
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(9)

Pumped Kerr resonators

- R. Rota, F. Minganti, C. Ciuti, and V. Savona, Phys. Rev. A 112, 110405 (2019).
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FIG. 1. Experimental setup. a, Individual cesium atoms
are trapped near the surface of the nanofiber-section of a ta-
pered optical fiber. They are exposed to a near-resonant ex-
citation laser field (frequency !I), propagating along the +y-
direction. A fraction of the atomic fluorescence is scattered
into the guided mode of the nanofiber (frequency !S). This
light is superposed with a reference beam that is derived from
the excitation laser and frequency-shifted by +10MHz. The
resulting beat note is recorded with a single photon counting
module (SPCM). Its Fourier analysis yields the fluorescence
spectrum, which grants access to the energy spectrum of the
trapped atoms. b, The strong spatial confinement of the trap-
ping light fields results in large fictitious magnetic field gra-
dients that give rise to a coupling between the atomic spin
and its motional degree of freedom. Contours of the scalar
part of the trapping potential are indicated by black lines. A
yellow dot marks the position of the atom at one trapping
site. The amplitude of the main component of the field, B(x)

fict,
is shown as a density plot (logarithmic color scale). The gray
disk indicates the cross section of the nanofiber.

described by the following Hamiltonian:

Ĥ =
X

i=x,y,z

~!iâ
†
i âi + gFµBF̂ · (B0 +Bfict), (1)

with gF the hyperfine Landé factor and µB the Bohr
magneton. Assuming that the fictitious magnetic field
consists of a linear gradient along y, and only considering
the y motional DOF, we can rewrite (1) as (see SM):

Ĥy = ~!yâ
†
yây + ~�F̂y +

~gyp
2F

�
â
†
y + ây

� ⇣
F̂+ + F̂�

⌘
,

(2)

where F̂+ (F̂�) is the spin raising (lowering) operator
for the eigenstates of F̂y with eigenvalues ~mF . For
F = 1/2, Hamiltonian (2) corresponds to the QRM,
while for F > 1/2, as is the case for cesium, it corre-
sponds to the DM. The physics is governed by three pa-
rameters: The bosonic mode frequency, !y, the Zeeman
splitting between adjacent mF -states, � / B0, and the
spin-motion coupling strength, gy / by. For our configu-
ration, we expect gy ⇡ 2⇡ ⇥ 19 kHz for a calculated trap
frequency !y ⇡ 2⇡ ⇥ 95 kHz, i.e., gy/!y ⇡ 0.2.

The low-energy eigenstates of Ĥy are illustrated in
Fig. 2a,b. We consider the case of cesium in the F = 4
hyperfine ground state. In the absence of spin-motion
coupling (gy = 0), the eigenstates are the bare states
|mF , nyi, where ny corresponds to a Fock state of the
harmonic trapping potential. In the presence of spin-
motion coupling, the new eigenstates are dressed states.
When the coupling is resonant (� = !y), the degeneracy
of the bare states |�4, 1i and |�3, 0i is lifted, and the new
eigenstates are |±i= (|�4, 1i⌥ |�3, 0i)/

p
2, separated in

energy by ~⌦y, where ⌦y > 0 is the Rabi frequency. Here,
we expect ⌦y = 2gy ⇡ 2⇡ ⇥ 38 kHz (see SM).

In order to probe the low-energy part of Hamilto-
nian (2), we perform a heterodyne fluorescence spec-
troscopy measurement [30, 32]. The experimental setup
is sketched in Fig. 1a. The atoms are exposed to a
laser light field propagating along the +y-axis and �

�-
polarized with respect to the propagation direction. The
laser is red-detuned with respect to the cycling transi-
tion of the D2 line of Cesium, and its intensity is kept
low enough to ensure that it is scattered coherently by
the atoms (see SM). This laser provides degenerate Ra-
man cooling [30] and optical pumping, so that most of
the atoms populate the low-lying energy states depicted
in Fig. 2a,b. Part of the fluorescence light is scattered
into the guided mode of the optical nanofiber [33]. This
light is superposed with a reference beam, derived from
the excitation laser and frequency-shifted by +10MHz.
The resulting beat note is recorded using a single photon
counting module (SPCM). Post-processing the SPCM
data yields the intensity power spectral density (PSD).
This heterodyne setup enables a precise measurement of
the frequency di↵erence between the incoming photons
from the excitation beam (frequency !I) and the pho-
tons scattered by the atoms (frequency !S). In the case
of elastic scattering, the atomic state and the frequency
of the photons are unchanged (!I = !S), yielding the
carrier peak in the PSD. In the case of inelastic scat-
tering, the atomic state is changed and the di↵erence of
energy between the incoming and scattered photons has
to match the di↵erence of energy between the initial and
final atomic states. This gives rise to sidebands around
the carrier peak, the positions of which grant access to
the energy spectrum of the atoms.

We record fluorescence spectra for di↵erent values of

Atomic Systems

- A. Dareau et al., PRL 121, 253603 (2018).
- M.-L. Cai et al., Nat. Comm. 12, 1126 (2021).

Finite-component phase transitions

Implementations in quantum technologies

Polaritonics

- S. R. K. Rodriguez et al., PRL 118, 247402 (2017).  
- T. Fink et al., Nat. Phys 14, 365 (2018). 

The boson operator â (â†) annihilates (creates) an
excitation in the resonator. The dynamics is described by
the Lindblad master equation for the density matrix ρ̂ðtÞ:

∂ρ̂ðtÞ
∂t ¼ i½ρ̂; ĤðtÞ% þ γ

2
ð2â ρ̂ â† − â†â ρ̂−ρ̂â†âÞ: ð2Þ

Equation (2) can be written as ∂tρ̂ ¼ L̂ ρ̂, where L̂ is the
Liouvillian superoperator. L̂ has a complex spectrum, of
which two eigenvalues λ are particularly relevant for the
long-time dynamics: (i) λ ¼ 0 corresponds to the steady
state, and (ii) the nonzero eigenvalue with the real part
closest to zero is the Liouvillian gap λ̄.
An exact expression for the steady-state photon density

predicted by Eq. (2) was found in Ref. [4]. This exact
solution is shown as a gray line in Fig. 1(c), for U=γ ¼
0.0075 and a laser-cavity detuning Δ ¼ ω − ω0 ¼ γ. The
MFA follows from assuming the field to be coherent
with amplitude αðtÞ ¼ hâi. Equation (2) then reduces to
ið∂α=∂tÞ ¼ ðω0 − iðγ=2Þ þ Ujαj2Þαþ

ffiffi
I

p
e−iωt. The black

line in Fig. 1(c) is the corresponding MFA calculation,
displaying bistability for 31 < I=γ2 < 33. While the MFA
implies a hysteresis cycle when varying the power across
the bistability, the quantum solution is unique. This
apparent contradiction is due to the absence of fluctuations
in the MFA [3,4]. Fluctuations (quantum or classical)
render the mean-field steady states metastable [36,37],
and the unique steady state corresponds to their average.
The reconciliation between numerous reports of optical

bistability [31,38–46] and the quantum prediction of a
unique steady state [4] follows from the fact that fluctuations
can take astronomical times to induce switching between
metastable states. Historically, this switching time is known
as the tunneling time for bistability τtunn [47–49], first-
passage time [5], quantum activation time [50], or the
(inverse) asymptotic decay rate [26]. We will label this
characteristic time as τtunn, which is obtained byminimizing
the Liouvillian gap λ̄ as a function of I. λ̄ is calculated
numerically by diagonalizing L̂. Figure 1(d) shows τtunn as a
function of Δ=γ for different U=γ. For weak interactions
and/or large detunings, τtunn can vastly exceed realistic
measurement times. Consequently, hysteresis measurements
performed within a shorter time than τtunn lead to an apparent
bistability. In this vein, Casteels and co-workers predicted
how the hysteresis area should be influenced by quantum
fluctuationswhen the scanning time across the “bistability” is
commensuratewith τtunn [22]. They predicted a double power
law decay of the hysteresis area [22], in contrast with
previous reports of a single power law decay [40].
To measure dynamic optical hysteresis, we use micro-

pillars etched from a GaAs λ planar cavity containing one
8 nm In0.04Ga0.96As quantum well and surrounded by two
Ga0.9Al0.1As=Ga0.05Al0.95As distributed Bragg reflectors
with 26 and 30 pairs of layers at the top and bottom,
respectively. We use rectangular micropillars where

discrete states are many linewidths apart and orthogonal
linearly polarized modes are nondegenerate. Thus, our
configuration emulates a single mode nonlinear cavity as
described by Eqs. (1) and (2). The sample is maintained at
4 K and driven by a frequency-tunable single-mode laser.
We probe the lowest energy mode of the micropillars,
whose linewidth ranges from 28 to 34 μeV [35]. The value
of U is estimated from the energy of the confined polariton
mode and its exciton fraction [35]. The laser power is
modulated by an electro-optic modulator (EOM) fed by a
waveform generator [see Fig. 2(a)]. The waveform contains
a series of ∼50 triangular ramps of variable time duration.
The transmission through the cavity is measured with a
photodiode connected to an oscilloscope. The scanning
times ts (the time it takes to ramp the power from the lowest
to the highest value) span the 0.8–50 kHz range. As shown
in the Supplemental Material, laser shot noise is the only
noise source within this frequency range and we exclude
additional fluctuations from our observations [35].
We are interested in the hysteresis area,

A ¼
Z

Pmax

Pmin

jn↓ðPÞ − n↑ðPÞjdP; ð3Þ
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FIG. 1. (a) Sketch of a microcavity with mode frequency ω0,
loss rate γ, photon-photon interactions of strengthU, driven by an
electromagnetic field of intensity I and frequency ω. (b) Normal-
ized photon density in a semiconductor microcavity under
weak driving. Experimental data points for the sample studied
in Figs. 2, 3, and 4 are fitted with a Lorentzian line shape.
The shaded area indicates the mean-field bistable regime Δ≡
ω − ω0 >

ffiffiffi
3

p
γ=2 for U > 0. (c) Mean-field (black curves) and

quantum (gray curves) solutions for a cavity with U ¼ 0.0075 γ
probed at Δ ¼ γ. In the mean-field solution, the solid and dashed
curves are stable and unstable states, respectively. (d) Tunneling
time τtunn between the two mean-field states. Data points are
residence time measurements [35].
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
�
!↵+ �↵⇤ + 2✏|↵|2↵

�
a† + H.c., (3)

H(2) =
�
! + 4✏|↵|2

�
a†a+

⇣�
2
+ ✏↵2

⌘
a†

2
+
⇣�
2
+ ✏↵⇤2

⌘
a2, (4)

H(3/4) = ✏
⇣
a†a†aa+ 2↵a†

2
a+ 2↵⇤a†a2

⌘
. (5)

The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q

��!
2✏ we obtain,

H± = (2�� !)a†a+
!

2

⇣
a†

2
+ a2

⌘
+O(

p
✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
p

�2�( k
2 )

2�!
2✏ , and tan� =

p
�2�( k

2 )
2��

k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, �0, yielding slightly different frequency–flux curvatures.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,
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Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, �0, yielding slightly different frequency–flux curvatures.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
�
!↵+ �↵⇤ + 2✏|↵|2↵

�
a† + H.c., (3)

H(2) =
�
! + 4✏|↵|2

�
a†a+

⇣�
2
+ ✏↵2

⌘
a†

2
+
⇣�
2
+ ✏↵⇤2

⌘
a2, (4)

H(3/4) = ✏
⇣
a†a†aa+ 2↵a†

2
a+ 2↵⇤a†a2

⌘
. (5)

The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!
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and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is
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II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form
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where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, �0, yielding slightly different frequency–flux curvatures.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,
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Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, �0, yielding slightly different frequency–flux curvatures.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
�
!↵+ �↵⇤ + 2✏|↵|2↵
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q
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and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is
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k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form
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where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, �0, yielding slightly different frequency–flux curvatures.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.
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and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is
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and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
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exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
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where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, �0, yielding slightly different frequency–flux curvatures.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q

��!
2✏ we obtain,
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and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is
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and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
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exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form
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where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, �0, yielding slightly different frequency–flux curvatures.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the
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tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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FIG. 2. (a) QFI for the estimation of ! as a function of
✏, computed for !/� = 1 and various values of �/�. In the
Gaussian case (black line, � ! 0), the QFI diverges at ✏ =p
!2 + �2. For finite values of �, the QFI reaches a maximum

value. In the inset, we show that S!=� ⇠ c(��)�1, where
S! = max✏ S

Hom

! is the optimized SNR value for homodyne
detection, and c ' 0.55. Since N = ⇥(

p
��1), the full model

reaches the Heisenberg scaling in the �/� . 10�2 regime.
(b) SNR for the optimal homodyne (SHom

! ) and heterodyne
detection (SHet

! ) at !/� = 1 and �/� = 0.04. Homodyne
detection virtually saturates the QFI already for this value of
�.

diverging scaling for ✏/✏c ! 1. For ! 6= 0 we retrieve the
Heisenberg scaling I! = O(N2), while for ! = 0 one has
I! = O(N). The Heisenberg scaling is compensated by
the critical slowing down in the proximity of the critical-
ity [19]. We notice also that the divergence rate I!/N2

is maximal at ! = �. In the following, we focus at this
point, where the QFI is maximal for low-enough �.

(ii) The symmetry-broken phase (� ! 0).— The model
is invariant under the transformation â ! �â, result-
ing in a Z2-symmetry. In the � ! 0 limit, and for
✏ > ✏c, such a symmetry is broken resulting in a second-
order DPT. The symmetry-broken solutions are well-
approximated by Gaussian states that can be obtained
by displacing the field â ! â + ↵, with ↵ 2 C [29]. For
nonzero �, the steady state is well-approximated by a
statistical mixture of two Gaussian states [50]. Indeed, a
Gaussian approximation leads to ⇢ = 1

2
[D(↵)⇢+D(↵) +

D(�↵)⇢�D(�↵)]. Here, ⇢± are the steady-states for
H± = !0â†â + 1

2

�
✏0â†2 + ✏0⇤â2

�
+ O(

p
�) and dissipa-

tor LD, where !0 = 2
p

✏2 � �2�! and |✏0| = ✏c. Namely,
↵ is the solution of !↵ + ✏↵⇤ + 2�|↵|2↵ � i�↵ = 0 [56].
By setting ↵ = |↵|ei�, we find the two solutions, holding
for ✏ > ✏c:

|↵|2 =

p
✏2 � �2 � !

2�
, � =

arcsin (�/✏) ± ⇡

2
. (5)

Notice that the Hamiltonians H± are the same at the ze-
roth order in �. Therefore, ⇢+ ' ⇢� and the steady-state

solutions consist in a mixture of two identical squeezed-
thermal states displaced in opposite directions [50]. The
QFI shows a divergence at ✏ ! ✏c, as seen in the normal
phase. This confirms that in proximity of the transition
the QFI diverges for � ! 0. Increasing the pump power ✏
corresponds to an e↵ective growth of the pump-resonator
detuning, since !0 ⇠ ✏ for large ✏. Instead, the e↵ective
squeezing parameter ✏0 remains constant in modulus. It
is then clear that the e↵ect of increasing the pump is
to displace the state to the new equilibrium points, and
to reduce the squeezing of each of the resulting states.
Therefore, for su�ciently large ✏, the QFI value is solely
determined by the response of ↵ to the !’s changes. Us-
ing Eq. (5), one can easily see that I! = ⇥(✏�1) for ✏ � 1.
(iii) The full model (finite �).— We are now ready

to show our results beyond the Gaussian approxima-
tion. Hereafter, the observables for the QFI were ob-
tained through the analytical solutions in Refs. [50–52],
while the steady-state density matrix were obtained solv-
ing the equation �i[ĤKerr, ⇢ss] + LD[⇢ss] = 0 via sparse
LU decomposition [59]. We then compute the QFI us-
ing Eq. (3). The e↵ect of the Kerr term is to regularize
the model, eliminating the divergences that appear in the
Gaussian approximation. As expected, the QFI increases
with ✏ up to a maximum point, then it starts to decrease.
This maximum point is reached for ✏ = ✏c in the � ! 0
limit. From Fig. 2(b), we see that homodyne detection
virtually saturates the maximal achievable QFI already
for �/� = 0.04. In fact, in the � ! 0 limit one can easily
see that homodyne is optimal at the critical point [56].
We are particularly interested in the parameter setting
(!, ✏) where the QFI is maximal given values for (�, �).
In fact, while ! and ✏ can be easily tuned, � and � are
usually fixed by the circuit fabrication. Therefore, for
this analysis we consider the quantity S! = max✏ SHom

!
.

We then focus on the ! = � point, where the QFI is op-
timal in the � ! 0 limit. With a numerical fit, we find
that S!=�(�, �) ' c(��)�1 in the �/� . 10�2 regime,
where c ' 0.55, see Fig. 2(a). Let us consider the max-
imal QFI, i.e. I!(�, �) = max✏ I!(�, �, ✏). We always
have that I!=� � S!=�. However, in Fig. 2(b) we see
that S!=� ' I!=� already for �/� . 0.04. One can then
check that N = ⇥(

p
��1) to show that the Heisenberg

scaling is reached already for �/� . 10�2.
Magnetometry.— We now consider an application of

our results for the quantum estimation of magnetic flux.
Let us consider a SQUID coupled with a �/4 resonator.
This system can be described with the Hamitonian in
Eq. (1). A magnetometer can be designed by coupling
the magnetic field into the SQUID loop. The resonator
frequency !r depends on the external magnetic flux as
!r(�) ' !�/4/[1 + �0/| cos(�)|], where !�/4 is the fre-
quency of the �/4 resonator in absence of the SQUID,
� = ⇡�ext/�0 is the applied magnetic flux �ext in unit of
the flux quantum �0, and �0 is the geometrical resonator
inductance. We work in the ⇡/4 . � < ⇡/2 regime,
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detection virtually saturates the QFI already for this value of
�.

diverging scaling for ✏/✏c ! 1. For ! 6= 0 we retrieve the
Heisenberg scaling I! = O(N2), while for ! = 0 one has
I! = O(N). The Heisenberg scaling is compensated by
the critical slowing down in the proximity of the critical-
ity [19]. We notice also that the divergence rate I!/N2

is maximal at ! = �. In the following, we focus at this
point, where the QFI is maximal for low-enough �.

(ii) The symmetry-broken phase (� ! 0).— The model
is invariant under the transformation â ! �â, result-
ing in a Z2-symmetry. In the � ! 0 limit, and for
✏ > ✏c, such a symmetry is broken resulting in a second-
order DPT. The symmetry-broken solutions are well-
approximated by Gaussian states that can be obtained
by displacing the field â ! â + ↵, with ↵ 2 C [29]. For
nonzero �, the steady state is well-approximated by a
statistical mixture of two Gaussian states [50]. Indeed, a
Gaussian approximation leads to ⇢ = 1
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[D(↵)⇢+D(↵) +

D(�↵)⇢�D(�↵)]. Here, ⇢± are the steady-states for
H± = !0â†â + 1
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�) and dissipa-

tor LD, where !0 = 2
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✏2 � �2�! and |✏0| = ✏c. Namely,
↵ is the solution of !↵ + ✏↵⇤ + 2�|↵|2↵ � i�↵ = 0 [56].
By setting ↵ = |↵|ei�, we find the two solutions, holding
for ✏ > ✏c:

|↵|2 =
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. (5)

Notice that the Hamiltonians H± are the same at the ze-
roth order in �. Therefore, ⇢+ ' ⇢� and the steady-state

solutions consist in a mixture of two identical squeezed-
thermal states displaced in opposite directions [50]. The
QFI shows a divergence at ✏ ! ✏c, as seen in the normal
phase. This confirms that in proximity of the transition
the QFI diverges for � ! 0. Increasing the pump power ✏
corresponds to an e↵ective growth of the pump-resonator
detuning, since !0 ⇠ ✏ for large ✏. Instead, the e↵ective
squeezing parameter ✏0 remains constant in modulus. It
is then clear that the e↵ect of increasing the pump is
to displace the state to the new equilibrium points, and
to reduce the squeezing of each of the resulting states.
Therefore, for su�ciently large ✏, the QFI value is solely
determined by the response of ↵ to the !’s changes. Us-
ing Eq. (5), one can easily see that I! = ⇥(✏�1) for ✏ � 1.
(iii) The full model (finite �).— We are now ready

to show our results beyond the Gaussian approxima-
tion. Hereafter, the observables for the QFI were ob-
tained through the analytical solutions in Refs. [50–52],
while the steady-state density matrix were obtained solv-
ing the equation �i[ĤKerr, ⇢ss] + LD[⇢ss] = 0 via sparse
LU decomposition [59]. We then compute the QFI us-
ing Eq. (3). The e↵ect of the Kerr term is to regularize
the model, eliminating the divergences that appear in the
Gaussian approximation. As expected, the QFI increases
with ✏ up to a maximum point, then it starts to decrease.
This maximum point is reached for ✏ = ✏c in the � ! 0
limit. From Fig. 2(b), we see that homodyne detection
virtually saturates the maximal achievable QFI already
for �/� = 0.04. In fact, in the � ! 0 limit one can easily
see that homodyne is optimal at the critical point [56].
We are particularly interested in the parameter setting
(!, ✏) where the QFI is maximal given values for (�, �).
In fact, while ! and ✏ can be easily tuned, � and � are
usually fixed by the circuit fabrication. Therefore, for
this analysis we consider the quantity S! = max✏ SHom

!
.

We then focus on the ! = � point, where the QFI is op-
timal in the � ! 0 limit. With a numerical fit, we find
that S!=�(�, �) ' c(��)�1 in the �/� . 10�2 regime,
where c ' 0.55, see Fig. 2(a). Let us consider the max-
imal QFI, i.e. I!(�, �) = max✏ I!(�, �, ✏). We always
have that I!=� � S!=�. However, in Fig. 2(b) we see
that S!=� ' I!=� already for �/� . 0.04. One can then
check that N = ⇥(

p
��1) to show that the Heisenberg

scaling is reached already for �/� . 10�2.
Magnetometry.— We now consider an application of

our results for the quantum estimation of magnetic flux.
Let us consider a SQUID coupled with a �/4 resonator.
This system can be described with the Hamitonian in
Eq. (1). A magnetometer can be designed by coupling
the magnetic field into the SQUID loop. The resonator
frequency !r depends on the external magnetic flux as
!r(�) ' !�/4/[1 + �0/| cos(�)|], where !�/4 is the fre-
quency of the �/4 resonator in absence of the SQUID,
� = ⇡�ext/�0 is the applied magnetic flux �ext in unit of
the flux quantum �0, and �0 is the geometrical resonator
inductance. We work in the ⇡/4 . � < ⇡/2 regime,
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diverging scaling for ✏/✏c ! 1. For ! 6= 0 we retrieve the
Heisenberg scaling I! = O(N2), while for ! = 0 one has
I! = O(N). The Heisenberg scaling is compensated by
the critical slowing down in the proximity of the critical-
ity [19]. We notice also that the divergence rate I!/N2

is maximal at ! = �. In the following, we focus at this
point, where the QFI is maximal for low-enough �.

(ii) The symmetry-broken phase (� ! 0).— The model
is invariant under the transformation â ! �â, result-
ing in a Z2-symmetry. In the � ! 0 limit, and for
✏ > ✏c, such a symmetry is broken resulting in a second-
order DPT. The symmetry-broken solutions are well-
approximated by Gaussian states that can be obtained
by displacing the field â ! â + ↵, with ↵ 2 C [29]. For
nonzero �, the steady state is well-approximated by a
statistical mixture of two Gaussian states [50]. Indeed, a
Gaussian approximation leads to ⇢ = 1

2
[D(↵)⇢+D(↵) +

D(�↵)⇢�D(�↵)]. Here, ⇢± are the steady-states for
H± = !0â†â + 1
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✏2 � �2�! and |✏0| = ✏c. Namely,
↵ is the solution of !↵ + ✏↵⇤ + 2�|↵|2↵ � i�↵ = 0 [56].
By setting ↵ = |↵|ei�, we find the two solutions, holding
for ✏ > ✏c:

|↵|2 =
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, � =
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. (5)

Notice that the Hamiltonians H± are the same at the ze-
roth order in �. Therefore, ⇢+ ' ⇢� and the steady-state

solutions consist in a mixture of two identical squeezed-
thermal states displaced in opposite directions [50]. The
QFI shows a divergence at ✏ ! ✏c, as seen in the normal
phase. This confirms that in proximity of the transition
the QFI diverges for � ! 0. Increasing the pump power ✏
corresponds to an e↵ective growth of the pump-resonator
detuning, since !0 ⇠ ✏ for large ✏. Instead, the e↵ective
squeezing parameter ✏0 remains constant in modulus. It
is then clear that the e↵ect of increasing the pump is
to displace the state to the new equilibrium points, and
to reduce the squeezing of each of the resulting states.
Therefore, for su�ciently large ✏, the QFI value is solely
determined by the response of ↵ to the !’s changes. Us-
ing Eq. (5), one can easily see that I! = ⇥(✏�1) for ✏ � 1.
(iii) The full model (finite �).— We are now ready

to show our results beyond the Gaussian approxima-
tion. Hereafter, the observables for the QFI were ob-
tained through the analytical solutions in Refs. [50–52],
while the steady-state density matrix were obtained solv-
ing the equation �i[ĤKerr, ⇢ss] + LD[⇢ss] = 0 via sparse
LU decomposition [59]. We then compute the QFI us-
ing Eq. (3). The e↵ect of the Kerr term is to regularize
the model, eliminating the divergences that appear in the
Gaussian approximation. As expected, the QFI increases
with ✏ up to a maximum point, then it starts to decrease.
This maximum point is reached for ✏ = ✏c in the � ! 0
limit. From Fig. 2(b), we see that homodyne detection
virtually saturates the maximal achievable QFI already
for �/� = 0.04. In fact, in the � ! 0 limit one can easily
see that homodyne is optimal at the critical point [56].
We are particularly interested in the parameter setting
(!, ✏) where the QFI is maximal given values for (�, �).
In fact, while ! and ✏ can be easily tuned, � and � are
usually fixed by the circuit fabrication. Therefore, for
this analysis we consider the quantity S! = max✏ SHom

!
.

We then focus on the ! = � point, where the QFI is op-
timal in the � ! 0 limit. With a numerical fit, we find
that S!=�(�, �) ' c(��)�1 in the �/� . 10�2 regime,
where c ' 0.55, see Fig. 2(a). Let us consider the max-
imal QFI, i.e. I!(�, �) = max✏ I!(�, �, ✏). We always
have that I!=� � S!=�. However, in Fig. 2(b) we see
that S!=� ' I!=� already for �/� . 0.04. One can then
check that N = ⇥(

p
��1) to show that the Heisenberg

scaling is reached already for �/� . 10�2.
Magnetometry.— We now consider an application of

our results for the quantum estimation of magnetic flux.
Let us consider a SQUID coupled with a �/4 resonator.
This system can be described with the Hamitonian in
Eq. (1). A magnetometer can be designed by coupling
the magnetic field into the SQUID loop. The resonator
frequency !r depends on the external magnetic flux as
!r(�) ' !�/4/[1 + �0/| cos(�)|], where !�/4 is the fre-
quency of the �/4 resonator in absence of the SQUID,
� = ⇡�ext/�0 is the applied magnetic flux �ext in unit of
the flux quantum �0, and �0 is the geometrical resonator
inductance. We work in the ⇡/4 . � < ⇡/2 regime,
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I! = O(N). The Heisenberg scaling is compensated by
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ity [19]. We notice also that the divergence rate I!/N2
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(ii) The symmetry-broken phase (� ! 0).— The model
is invariant under the transformation â ! �â, result-
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✏ > ✏c, such a symmetry is broken resulting in a second-
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approximated by Gaussian states that can be obtained
by displacing the field â ! â + ↵, with ↵ 2 C [29]. For
nonzero �, the steady state is well-approximated by a
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thermal states displaced in opposite directions [50]. The
QFI shows a divergence at ✏ ! ✏c, as seen in the normal
phase. This confirms that in proximity of the transition
the QFI diverges for � ! 0. Increasing the pump power ✏
corresponds to an e↵ective growth of the pump-resonator
detuning, since !0 ⇠ ✏ for large ✏. Instead, the e↵ective
squeezing parameter ✏0 remains constant in modulus. It
is then clear that the e↵ect of increasing the pump is
to displace the state to the new equilibrium points, and
to reduce the squeezing of each of the resulting states.
Therefore, for su�ciently large ✏, the QFI value is solely
determined by the response of ↵ to the !’s changes. Us-
ing Eq. (5), one can easily see that I! = ⇥(✏�1) for ✏ � 1.
(iii) The full model (finite �).— We are now ready

to show our results beyond the Gaussian approxima-
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while the steady-state density matrix were obtained solv-
ing the equation �i[ĤKerr, ⇢ss] + LD[⇢ss] = 0 via sparse
LU decomposition [59]. We then compute the QFI us-
ing Eq. (3). The e↵ect of the Kerr term is to regularize
the model, eliminating the divergences that appear in the
Gaussian approximation. As expected, the QFI increases
with ✏ up to a maximum point, then it starts to decrease.
This maximum point is reached for ✏ = ✏c in the � ! 0
limit. From Fig. 2(b), we see that homodyne detection
virtually saturates the maximal achievable QFI already
for �/� = 0.04. In fact, in the � ! 0 limit one can easily
see that homodyne is optimal at the critical point [56].
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In fact, while ! and ✏ can be easily tuned, � and � are
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We then focus on the ! = � point, where the QFI is op-
timal in the � ! 0 limit. With a numerical fit, we find
that S!=�(�, �) ' c(��)�1 in the �/� . 10�2 regime,
where c ' 0.55, see Fig. 2(a). Let us consider the max-
imal QFI, i.e. I!(�, �) = max✏ I!(�, �, ✏). We always
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This system can be described with the Hamitonian in
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the magnetic field into the SQUID loop. The resonator
frequency !r depends on the external magnetic flux as
!r(�) ' !�/4/[1 + �0/| cos(�)|], where !�/4 is the fre-
quency of the �/4 resonator in absence of the SQUID,
� = ⇡�ext/�0 is the applied magnetic flux �ext in unit of
the flux quantum �0, and �0 is the geometrical resonator
inductance. We work in the ⇡/4 . � < ⇡/2 regime,

Quantum Fisher information

! = !(B)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
�
!↵+ �↵⇤ + 2✏|↵|2↵

�
a† + H.c., (3)

H(2) =
�
! + 4✏|↵|2

�
a†a+

⇣�
2
+ ✏↵2

⌘
a†

2
+
⇣�
2
+ ✏↵⇤2

⌘
a2, (4)

H(3/4) = ✏
⇣
a†a†aa+ 2↵a†

2
a+ 2↵⇤a†a2

⌘
. (5)

The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q

��!
2✏ we obtain,

H± = (2�� !)a†a+
!

2

⇣
a†

2
+ a2

⌘
+O(

p
✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
p

�2�( k
2 )

2�!
2✏ , and tan� =

p
�2�( k

2 )
2��

k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Figure 1. (a) Schematic circuit diagram of the measurement setup using a VNA.
The quarter-wavelength coplanar waveguide (CPW) resonator (red) is defined
by a coupling capacitor to the probe line in one end and shorted to ground via
the SQUID in the other. The dc-flux bias 8dc is set using a superconducting
coil (blue) mounted on the sample box, whereas the microwave-pump, used
to modulate the flux around 8dc, is realized by an on-chip fast tuning line
(green). A denotes the field inside the resonator. B and C denote the incoming
(probe) and reflected field waves, respectively. (b) Extracted resonant frequencies
of the two devices in table 1, fitted to equation (2), with different inductive
participation ratios, �0, yielding slightly different frequency–flux curvatures.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)

�O
2
! = hÔ2i! � hÔi2!
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FIG. 2. (a) QFI for the estimation of ! as a function of
✏, computed for !/� = 1 and various values of �/�. In the
Gaussian case (black line, � ! 0), the QFI diverges at ✏ =p
!2 + �2. For finite values of �, the QFI reaches a maximum

value. In the inset, we show that S!=� ⇠ c(��)�1, where
S! = max✏ S

Hom

! is the optimized SNR value for homodyne
detection, and c ' 0.55. Since N = ⇥(

p
��1), the full model

reaches the Heisenberg scaling in the �/� . 10�2 regime.
(b) SNR for the optimal homodyne (SHom

! ) and heterodyne
detection (SHet

! ) at !/� = 1 and �/� = 0.04. Homodyne
detection virtually saturates the QFI already for this value of
�.

diverging scaling for ✏/✏c ! 1. For ! 6= 0 we retrieve the
Heisenberg scaling I! = O(N2), while for ! = 0 one has
I! = O(N). The Heisenberg scaling is compensated by
the critical slowing down in the proximity of the critical-
ity [19]. We notice also that the divergence rate I!/N2

is maximal at ! = �. In the following, we focus at this
point, where the QFI is maximal for low-enough �.

(ii) The symmetry-broken phase (� ! 0).— The model
is invariant under the transformation â ! �â, result-
ing in a Z2-symmetry. In the � ! 0 limit, and for
✏ > ✏c, such a symmetry is broken resulting in a second-
order DPT. The symmetry-broken solutions are well-
approximated by Gaussian states that can be obtained
by displacing the field â ! â + ↵, with ↵ 2 C [29]. For
nonzero �, the steady state is well-approximated by a
statistical mixture of two Gaussian states [50]. Indeed, a
Gaussian approximation leads to ⇢ = 1

2
[D(↵)⇢+D(↵) +

D(�↵)⇢�D(�↵)]. Here, ⇢± are the steady-states for
H± = !0â†â + 1

2

�
✏0â†2 + ✏0⇤â2

�
+ O(

p
�) and dissipa-

tor LD, where !0 = 2
p

✏2 � �2�! and |✏0| = ✏c. Namely,
↵ is the solution of !↵ + ✏↵⇤ + 2�|↵|2↵ � i�↵ = 0 [56].
By setting ↵ = |↵|ei�, we find the two solutions, holding
for ✏ > ✏c:

|↵|2 =

p
✏2 � �2 � !

2�
, � =

arcsin (�/✏) ± ⇡

2
. (5)

Notice that the Hamiltonians H± are the same at the ze-
roth order in �. Therefore, ⇢+ ' ⇢� and the steady-state

solutions consist in a mixture of two identical squeezed-
thermal states displaced in opposite directions [50]. The
QFI shows a divergence at ✏ ! ✏c, as seen in the normal
phase. This confirms that in proximity of the transition
the QFI diverges for � ! 0. Increasing the pump power ✏
corresponds to an e↵ective growth of the pump-resonator
detuning, since !0 ⇠ ✏ for large ✏. Instead, the e↵ective
squeezing parameter ✏0 remains constant in modulus. It
is then clear that the e↵ect of increasing the pump is
to displace the state to the new equilibrium points, and
to reduce the squeezing of each of the resulting states.
Therefore, for su�ciently large ✏, the QFI value is solely
determined by the response of ↵ to the !’s changes. Us-
ing Eq. (5), one can easily see that I! = ⇥(✏�1) for ✏ � 1.
(iii) The full model (finite �).— We are now ready

to show our results beyond the Gaussian approxima-
tion. Hereafter, the observables for the QFI were ob-
tained through the analytical solutions in Refs. [50–52],
while the steady-state density matrix were obtained solv-
ing the equation �i[ĤKerr, ⇢ss] + LD[⇢ss] = 0 via sparse
LU decomposition [59]. We then compute the QFI us-
ing Eq. (3). The e↵ect of the Kerr term is to regularize
the model, eliminating the divergences that appear in the
Gaussian approximation. As expected, the QFI increases
with ✏ up to a maximum point, then it starts to decrease.
This maximum point is reached for ✏ = ✏c in the � ! 0
limit. From Fig. 2(b), we see that homodyne detection
virtually saturates the maximal achievable QFI already
for �/� = 0.04. In fact, in the � ! 0 limit one can easily
see that homodyne is optimal at the critical point [56].
We are particularly interested in the parameter setting
(!, ✏) where the QFI is maximal given values for (�, �).
In fact, while ! and ✏ can be easily tuned, � and � are
usually fixed by the circuit fabrication. Therefore, for
this analysis we consider the quantity S! = max✏ SHom

!
.

We then focus on the ! = � point, where the QFI is op-
timal in the � ! 0 limit. With a numerical fit, we find
that S!=�(�, �) ' c(��)�1 in the �/� . 10�2 regime,
where c ' 0.55, see Fig. 2(a). Let us consider the max-
imal QFI, i.e. I!(�, �) = max✏ I!(�, �, ✏). We always
have that I!=� � S!=�. However, in Fig. 2(b) we see
that S!=� ' I!=� already for �/� . 0.04. One can then
check that N = ⇥(

p
��1) to show that the Heisenberg

scaling is reached already for �/� . 10�2.
Magnetometry.— We now consider an application of

our results for the quantum estimation of magnetic flux.
Let us consider a SQUID coupled with a �/4 resonator.
This system can be described with the Hamitonian in
Eq. (1). A magnetometer can be designed by coupling
the magnetic field into the SQUID loop. The resonator
frequency !r depends on the external magnetic flux as
!r(�) ' !�/4/[1 + �0/| cos(�)|], where !�/4 is the fre-
quency of the �/4 resonator in absence of the SQUID,
� = ⇡�ext/�0 is the applied magnetic flux �ext in unit of
the flux quantum �0, and �0 is the geometrical resonator
inductance. We work in the ⇡/4 . � < ⇡/2 regime,
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on the resonator24,25. When the JPO is being pumped above the
threshold for parametric oscillation, with amplitude E and
frequency detuning, d, then a change of qubit state effectively
pulls the resonator to a different value of the detuning, outside of
the region of parametric oscillations—see Fig. 1b. We denote the
qubit-state-dependent detunings by d|0i¼ d" w and d|1i¼ dþ w.
The resulting mapping of the qubit state onto the average number
of photons in the resonator provides us with a qubit-state
read-out mechanism, which we exploit in this work.

Characterization of qubit and JPO. The device and cryogenic
experimental set-up are depicted in Fig. 1a. The sample is
thermally anchored to the mixing chamber of a dilution
refrigerator with a base temperature of 10mK. The parametric
l/4 resonator (in blue) is capacitively coupled with the trans-
mission line (Cc¼ 11.9 fF), yielding an external quality factor
Qext¼or/2G0¼ 2555. A transmon qubit (in red) is also coupled
near this end of the resonator.

The resonator output signal is amplified using a 4–8GHz high-
electron-mobility transistor amplifier, with a noise temperature
TN¼ 2.2 K, followed by two room-temperature amplifiers. We
detect the outgoing signal using heterodyne mixing. The signal is
first downconverted to a frequency (oRF"oLO)/2p¼ 187.5MHz;
then, the [I,Q]-quadrature voltages are sampled at 250MS s" 1,
before they are digitally downsampled at a rate of 20MS s" 1.

We first characterize the transmon spectroscopically—see
Fig. 2a—from which we extract the Josephson and charging
energies, EJ/2p¼ 9.82GHz and EC/2p¼ 453MHz, respectively.
From the vacuum Rabi splitting, we extract a qubit" resonator
coupling rate g01/2p¼ 46MHz—see Fig. 2b.

Next, we fit the frequency tuning curve of the resonator (with
the qubit in the |0i-state) to the relation

o 0j i
r Fð Þ ¼ or Fð Þ" g201=D Fð Þ; ð2Þ

where F¼ pFd.c./F0 denotes the static flux bias, normalized to the
magnetic flux quantum. The effective dispersive shift due to the
qubit is

w Fð Þ ¼ " g201
D Fð Þ

EC
D Fð Þ"EC

! "
; ð3Þ
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Figure 1 | Experimental set-up and read-out mechanism. (a) Schematic of
the cryogenic microwave reflectometry set-up. The transmon qubit (red) is
capacitively coupled with the coplanar waveguide parametric resonator
(blue). The input and output flows of photons are denoted |B|2 and |C|2,
respectively, whereas the number of photons in the resonator is denoted
|A|2. The output signal is acquired using heterodyne detection of the
amplified microwave signal. The components drawn in lighter grey are
those that are rendered unnecessary by the JPO read-out method, thereby
offering a simplified experimental set-up (see text). (b) Parametric
oscillation regions for the qubit ground state |0i (solid blue line) and
excited state |1i (dashed blue line), respectively. These blue lines represent
the instability boundaries, E¼Eth, where the number of steady-state
solutions to equation (1) changes. The two panels on the right are
measured [I,Q]-quadrature voltage histograms of the device output for the
pump bias point indicated by the circles, revealing two different oscillator
states: outside of the region of parametric oscillations, the resonator is
quiet (|A|2¼0). Within the region, the resonator has two oscillating states
(|A|240), with a phase difference of p radians.
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Figure 2 | Combined resonator-qubit frequency spectra. (a) Qubit
spectroscopy was used to map out the transmon spectrum (in red),
whereas the resonator spectrum (in blue) was extracted using standard
reflectometry. The solid red and grey lines are fits. The dashed grey line, at
resonator flux bias F¼0.185p, indicates the bias point at which we later
demonstrate the read-out method. (b) Vacuum Rabi splitting around the
flux bias point where the transmon frequency crosses that of the resonator,
indicated by the grey box in a. The minimum frequency splitting yields a
qubit–resonator coupling g01/2p¼46MHz.
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q
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2✏ we obtain,

H± = (2�� !)a†a+
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+O(
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✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
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k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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Dispersive coupling

on the resonator24,25. When the JPO is being pumped above the
threshold for parametric oscillation, with amplitude E and
frequency detuning, d, then a change of qubit state effectively
pulls the resonator to a different value of the detuning, outside of
the region of parametric oscillations—see Fig. 1b. We denote the
qubit-state-dependent detunings by d|0i¼ d" w and d|1i¼ dþ w.
The resulting mapping of the qubit state onto the average number
of photons in the resonator provides us with a qubit-state
read-out mechanism, which we exploit in this work.

Characterization of qubit and JPO. The device and cryogenic
experimental set-up are depicted in Fig. 1a. The sample is
thermally anchored to the mixing chamber of a dilution
refrigerator with a base temperature of 10mK. The parametric
l/4 resonator (in blue) is capacitively coupled with the trans-
mission line (Cc¼ 11.9 fF), yielding an external quality factor
Qext¼or/2G0¼ 2555. A transmon qubit (in red) is also coupled
near this end of the resonator.

The resonator output signal is amplified using a 4–8GHz high-
electron-mobility transistor amplifier, with a noise temperature
TN¼ 2.2 K, followed by two room-temperature amplifiers. We
detect the outgoing signal using heterodyne mixing. The signal is
first downconverted to a frequency (oRF"oLO)/2p¼ 187.5MHz;
then, the [I,Q]-quadrature voltages are sampled at 250MS s" 1,
before they are digitally downsampled at a rate of 20MS s" 1.

We first characterize the transmon spectroscopically—see
Fig. 2a—from which we extract the Josephson and charging
energies, EJ/2p¼ 9.82GHz and EC/2p¼ 453MHz, respectively.
From the vacuum Rabi splitting, we extract a qubit" resonator
coupling rate g01/2p¼ 46MHz—see Fig. 2b.

Next, we fit the frequency tuning curve of the resonator (with
the qubit in the |0i-state) to the relation

o 0j i
r Fð Þ ¼ or Fð Þ" g201=D Fð Þ; ð2Þ

where F¼ pFd.c./F0 denotes the static flux bias, normalized to the
magnetic flux quantum. The effective dispersive shift due to the
qubit is

w Fð Þ ¼ " g201
D Fð Þ

EC
D Fð Þ"EC

! "
; ð3Þ
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Figure 1 | Experimental set-up and read-out mechanism. (a) Schematic of
the cryogenic microwave reflectometry set-up. The transmon qubit (red) is
capacitively coupled with the coplanar waveguide parametric resonator
(blue). The input and output flows of photons are denoted |B|2 and |C|2,
respectively, whereas the number of photons in the resonator is denoted
|A|2. The output signal is acquired using heterodyne detection of the
amplified microwave signal. The components drawn in lighter grey are
those that are rendered unnecessary by the JPO read-out method, thereby
offering a simplified experimental set-up (see text). (b) Parametric
oscillation regions for the qubit ground state |0i (solid blue line) and
excited state |1i (dashed blue line), respectively. These blue lines represent
the instability boundaries, E¼Eth, where the number of steady-state
solutions to equation (1) changes. The two panels on the right are
measured [I,Q]-quadrature voltage histograms of the device output for the
pump bias point indicated by the circles, revealing two different oscillator
states: outside of the region of parametric oscillations, the resonator is
quiet (|A|2¼0). Within the region, the resonator has two oscillating states
(|A|240), with a phase difference of p radians.
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Figure 2 | Combined resonator-qubit frequency spectra. (a) Qubit
spectroscopy was used to map out the transmon spectrum (in red),
whereas the resonator spectrum (in blue) was extracted using standard
reflectometry. The solid red and grey lines are fits. The dashed grey line, at
resonator flux bias F¼0.185p, indicates the bias point at which we later
demonstrate the read-out method. (b) Vacuum Rabi splitting around the
flux bias point where the transmon frequency crosses that of the resonator,
indicated by the grey box in a. The minimum frequency splitting yields a
qubit–resonator coupling g01/2p¼46MHz.
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q
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2✏ we obtain,

H± = (2�� !)a†a+
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and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)



22
Qubit readout

Hqc = �! �̂z â
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on the resonator24,25. When the JPO is being pumped above the
threshold for parametric oscillation, with amplitude E and
frequency detuning, d, then a change of qubit state effectively
pulls the resonator to a different value of the detuning, outside of
the region of parametric oscillations—see Fig. 1b. We denote the
qubit-state-dependent detunings by d|0i¼ d" w and d|1i¼ dþ w.
The resulting mapping of the qubit state onto the average number
of photons in the resonator provides us with a qubit-state
read-out mechanism, which we exploit in this work.

Characterization of qubit and JPO. The device and cryogenic
experimental set-up are depicted in Fig. 1a. The sample is
thermally anchored to the mixing chamber of a dilution
refrigerator with a base temperature of 10mK. The parametric
l/4 resonator (in blue) is capacitively coupled with the trans-
mission line (Cc¼ 11.9 fF), yielding an external quality factor
Qext¼or/2G0¼ 2555. A transmon qubit (in red) is also coupled
near this end of the resonator.

The resonator output signal is amplified using a 4–8GHz high-
electron-mobility transistor amplifier, with a noise temperature
TN¼ 2.2 K, followed by two room-temperature amplifiers. We
detect the outgoing signal using heterodyne mixing. The signal is
first downconverted to a frequency (oRF"oLO)/2p¼ 187.5MHz;
then, the [I,Q]-quadrature voltages are sampled at 250MS s" 1,
before they are digitally downsampled at a rate of 20MS s" 1.

We first characterize the transmon spectroscopically—see
Fig. 2a—from which we extract the Josephson and charging
energies, EJ/2p¼ 9.82GHz and EC/2p¼ 453MHz, respectively.
From the vacuum Rabi splitting, we extract a qubit" resonator
coupling rate g01/2p¼ 46MHz—see Fig. 2b.

Next, we fit the frequency tuning curve of the resonator (with
the qubit in the |0i-state) to the relation

o 0j i
r Fð Þ ¼ or Fð Þ" g201=D Fð Þ; ð2Þ

where F¼ pFd.c./F0 denotes the static flux bias, normalized to the
magnetic flux quantum. The effective dispersive shift due to the
qubit is

w Fð Þ ¼ " g201
D Fð Þ

EC
D Fð Þ"EC

! "
; ð3Þ
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Figure 1 | Experimental set-up and read-out mechanism. (a) Schematic of
the cryogenic microwave reflectometry set-up. The transmon qubit (red) is
capacitively coupled with the coplanar waveguide parametric resonator
(blue). The input and output flows of photons are denoted |B|2 and |C|2,
respectively, whereas the number of photons in the resonator is denoted
|A|2. The output signal is acquired using heterodyne detection of the
amplified microwave signal. The components drawn in lighter grey are
those that are rendered unnecessary by the JPO read-out method, thereby
offering a simplified experimental set-up (see text). (b) Parametric
oscillation regions for the qubit ground state |0i (solid blue line) and
excited state |1i (dashed blue line), respectively. These blue lines represent
the instability boundaries, E¼Eth, where the number of steady-state
solutions to equation (1) changes. The two panels on the right are
measured [I,Q]-quadrature voltage histograms of the device output for the
pump bias point indicated by the circles, revealing two different oscillator
states: outside of the region of parametric oscillations, the resonator is
quiet (|A|2¼0). Within the region, the resonator has two oscillating states
(|A|240), with a phase difference of p radians.
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Figure 2 | Combined resonator-qubit frequency spectra. (a) Qubit
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whereas the resonator spectrum (in blue) was extracted using standard
reflectometry. The solid red and grey lines are fits. The dashed grey line, at
resonator flux bias F¼0.185p, indicates the bias point at which we later
demonstrate the read-out method. (b) Vacuum Rabi splitting around the
flux bias point where the transmon frequency crosses that of the resonator,
indicated by the grey box in a. The minimum frequency splitting yields a
qubit–resonator coupling g01/2p¼46MHz.
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
�
!↵+ �↵⇤ + 2✏|↵|2↵
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a† + H.c., (3)
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2
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⌘
. (5)

The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q

��!
2✏ we obtain,

H± = (2�� !)a†a+
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a†

2
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+O(

p
✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
p

�2�( k
2 )
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2✏ , and tan� =

p
�2�( k

2 )
2��

k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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on the resonator24,25. When the JPO is being pumped above the
threshold for parametric oscillation, with amplitude E and
frequency detuning, d, then a change of qubit state effectively
pulls the resonator to a different value of the detuning, outside of
the region of parametric oscillations—see Fig. 1b. We denote the
qubit-state-dependent detunings by d|0i¼ d" w and d|1i¼ dþ w.
The resulting mapping of the qubit state onto the average number
of photons in the resonator provides us with a qubit-state
read-out mechanism, which we exploit in this work.

Characterization of qubit and JPO. The device and cryogenic
experimental set-up are depicted in Fig. 1a. The sample is
thermally anchored to the mixing chamber of a dilution
refrigerator with a base temperature of 10mK. The parametric
l/4 resonator (in blue) is capacitively coupled with the trans-
mission line (Cc¼ 11.9 fF), yielding an external quality factor
Qext¼or/2G0¼ 2555. A transmon qubit (in red) is also coupled
near this end of the resonator.

The resonator output signal is amplified using a 4–8GHz high-
electron-mobility transistor amplifier, with a noise temperature
TN¼ 2.2 K, followed by two room-temperature amplifiers. We
detect the outgoing signal using heterodyne mixing. The signal is
first downconverted to a frequency (oRF"oLO)/2p¼ 187.5MHz;
then, the [I,Q]-quadrature voltages are sampled at 250MS s" 1,
before they are digitally downsampled at a rate of 20MS s" 1.

We first characterize the transmon spectroscopically—see
Fig. 2a—from which we extract the Josephson and charging
energies, EJ/2p¼ 9.82GHz and EC/2p¼ 453MHz, respectively.
From the vacuum Rabi splitting, we extract a qubit" resonator
coupling rate g01/2p¼ 46MHz—see Fig. 2b.

Next, we fit the frequency tuning curve of the resonator (with
the qubit in the |0i-state) to the relation

o 0j i
r Fð Þ ¼ or Fð Þ" g201=D Fð Þ; ð2Þ

where F¼ pFd.c./F0 denotes the static flux bias, normalized to the
magnetic flux quantum. The effective dispersive shift due to the
qubit is
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Figure 1 | Experimental set-up and read-out mechanism. (a) Schematic of
the cryogenic microwave reflectometry set-up. The transmon qubit (red) is
capacitively coupled with the coplanar waveguide parametric resonator
(blue). The input and output flows of photons are denoted |B|2 and |C|2,
respectively, whereas the number of photons in the resonator is denoted
|A|2. The output signal is acquired using heterodyne detection of the
amplified microwave signal. The components drawn in lighter grey are
those that are rendered unnecessary by the JPO read-out method, thereby
offering a simplified experimental set-up (see text). (b) Parametric
oscillation regions for the qubit ground state |0i (solid blue line) and
excited state |1i (dashed blue line), respectively. These blue lines represent
the instability boundaries, E¼Eth, where the number of steady-state
solutions to equation (1) changes. The two panels on the right are
measured [I,Q]-quadrature voltage histograms of the device output for the
pump bias point indicated by the circles, revealing two different oscillator
states: outside of the region of parametric oscillations, the resonator is
quiet (|A|2¼0). Within the region, the resonator has two oscillating states
(|A|240), with a phase difference of p radians.
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Figure 2 | Combined resonator-qubit frequency spectra. (a) Qubit
spectroscopy was used to map out the transmon spectrum (in red),
whereas the resonator spectrum (in blue) was extracted using standard
reflectometry. The solid red and grey lines are fits. The dashed grey line, at
resonator flux bias F¼0.185p, indicates the bias point at which we later
demonstrate the read-out method. (b) Vacuum Rabi splitting around the
flux bias point where the transmon frequency crosses that of the resonator,
indicated by the grey box in a. The minimum frequency splitting yields a
qubit–resonator coupling g01/2p¼46MHz.
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q
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2✏ we obtain,

H± = (2�� !)a†a+
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✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
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2 )
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k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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The protocol consists in: (i) Apply a constant mag-
netic flux bias � ' ⇡/4 to the SQUID. (ii) Apply a
pump at frequency !p ' 2[!r(⇡/4) � �]. This allows
to work at ! ' �, where the QFI is maximal. (iii) Per-
form homodyne detection of the output signal. From the
input-output theory, we have that the resonator output
mode is âout =

p
2� â � âin, where âin is the input mode

assumed to be in the vacuum [60]. By applying the right
temporal filter at the output mode, one can retrieve the
same statistics of the intracavity mode [61, 62]. With
this premise, the SNR for output mode is the same as
the one derived for the intracavity mode.
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Let us assume an independent measurement every 2⇡/�,
and a measurement time of half second. This means that
we perform a total of M = � Hz�1/(4⇡) measurements.
It follows that the magnetometer sensitivity is
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for �0 . 0.05 [56]. Notice that since
p

� = ⇥(N�1) for
�/� . 10�2, the magnetometer reaches the Heisenberg
scaling in this regime. A typical value-set of parameters
easily reachable in an experiment is �0 ' 0.05, !�/4 '
2⇡ ⇥ 10 GHz, �0 ' 2⇡ ⇥ 100 MHz, and � ' 2⇡ ⇥ 4 MHz,
for which we have that �/� ' 10�2. With these values,

we achieve a sensitivity of around 6 ⇥ 10�7
p

Hz�1, that
can be improved by going at higher resonator frequencies,
or by designing circuits with lower �0 and �0, as shown
in Eq. (6).

Dispersive qubit readout.— We now discuss an appli-
cation of the Kerr resonator for superconducting-qubit
readout. By dipersively coupling a qubit to the resonator
Hamiltonian in Eq. (1), the Hamiltonian becomes [56]

Ĥdisp/~ = ĤKerr/~ + (!r + �)|eihe| + �!|eihe|â†â. (7)

Here, �! = g2/� is a frequency-shift that depends on
the qubit-resonator coupling g and the qubit-to-resonator
detuning � [63]. When the qubit is in its excited state
|ei, a frequency-shift is induced onto the resonator. The
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FIG. 3. (a) Map of the error probabilities with respect
to �! = g2/� and ✏, in units of �. The map is drawn by
setting ! = 0 and �/� = 0.04. The dashed lines represent
di↵erent values of the dispersive parameter ⌘ = N�!2/(4g2),
where N = max{N|ei, N|gi} = N|gi depends monotonically
on ✏, and we have fixed g/� = 102 to be in the strong—but
not ultrastrong—coupling regime. The parameter ⌘ should
be small enough in order for the dispersive approximation to
hold, and to minimize the disturbance on the qubit in the
measurement stage. For each dashed line, there is a sweet
point corresponding to a minimal error probability. For ⌘ =
10�2, we can reach error probability values as low as 10�4

if the optimal measurement is performed. (b) Homodyne
detection performs well at the optimal point, achieving an
error probability of 10�3. The inset shows the separation
in time of hx̂2

'i for the normal and symmetry-broken phases.
The steady-state value is reached at �t ' 10.

Hamiltonian Ĥdisp can be derived by applying perturba-
tion theory to the full qubit-resonator Hamiltonian, for
g/� ⌧ 1. The dispersive approximation holds as long as
g2N/(4�2) ⌘ ⌘ ⌧ 1, where N is the number of photons
in the resonator. Notice that a small ⌘ also minimizes the
disturbance induced to the qubit by the readout scheme.
In the following, we show how the presence of a DPT
leads to two highly distinguishable quantum states, that
can be used to perform high-fidelity qubit readout. Un-
like previous analysis, that use a semi-classical approxi-
mation to derive bona-fide estimations of the qubit read-
out fidelity [54], we perform numerical calculations using
the full quantum model. This is a great improvement
in the analysis, since the semi-classical model ignores
the presence of quantum fluctuations in proximity of the
phase transition, where highly squeezed states jeopar-
dize the quality of the protocol. An analysis of the full
quantum model is then inevitable to identify the set of
parameters maximizing the readout fidelity. Generally
speaking, the method consists in discriminating between
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Ĥdisp/~ = ĤKerr/~ + (!r + �)|eihe| + �!|eihe|â†â. (7)
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hold, and to minimize the disturbance on the qubit in the
measurement stage. For each dashed line, there is a sweet
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on the resonator24,25. When the JPO is being pumped above the
threshold for parametric oscillation, with amplitude E and
frequency detuning, d, then a change of qubit state effectively
pulls the resonator to a different value of the detuning, outside of
the region of parametric oscillations—see Fig. 1b. We denote the
qubit-state-dependent detunings by d|0i¼ d" w and d|1i¼ dþ w.
The resulting mapping of the qubit state onto the average number
of photons in the resonator provides us with a qubit-state
read-out mechanism, which we exploit in this work.

Characterization of qubit and JPO. The device and cryogenic
experimental set-up are depicted in Fig. 1a. The sample is
thermally anchored to the mixing chamber of a dilution
refrigerator with a base temperature of 10mK. The parametric
l/4 resonator (in blue) is capacitively coupled with the trans-
mission line (Cc¼ 11.9 fF), yielding an external quality factor
Qext¼or/2G0¼ 2555. A transmon qubit (in red) is also coupled
near this end of the resonator.

The resonator output signal is amplified using a 4–8GHz high-
electron-mobility transistor amplifier, with a noise temperature
TN¼ 2.2 K, followed by two room-temperature amplifiers. We
detect the outgoing signal using heterodyne mixing. The signal is
first downconverted to a frequency (oRF"oLO)/2p¼ 187.5MHz;
then, the [I,Q]-quadrature voltages are sampled at 250MS s" 1,
before they are digitally downsampled at a rate of 20MS s" 1.

We first characterize the transmon spectroscopically—see
Fig. 2a—from which we extract the Josephson and charging
energies, EJ/2p¼ 9.82GHz and EC/2p¼ 453MHz, respectively.
From the vacuum Rabi splitting, we extract a qubit" resonator
coupling rate g01/2p¼ 46MHz—see Fig. 2b.

Next, we fit the frequency tuning curve of the resonator (with
the qubit in the |0i-state) to the relation

o 0j i
r Fð Þ ¼ or Fð Þ" g201=D Fð Þ; ð2Þ

where F¼ pFd.c./F0 denotes the static flux bias, normalized to the
magnetic flux quantum. The effective dispersive shift due to the
qubit is

w Fð Þ ¼ " g201
D Fð Þ

EC
D Fð Þ"EC

! "
; ð3Þ
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Figure 1 | Experimental set-up and read-out mechanism. (a) Schematic of
the cryogenic microwave reflectometry set-up. The transmon qubit (red) is
capacitively coupled with the coplanar waveguide parametric resonator
(blue). The input and output flows of photons are denoted |B|2 and |C|2,
respectively, whereas the number of photons in the resonator is denoted
|A|2. The output signal is acquired using heterodyne detection of the
amplified microwave signal. The components drawn in lighter grey are
those that are rendered unnecessary by the JPO read-out method, thereby
offering a simplified experimental set-up (see text). (b) Parametric
oscillation regions for the qubit ground state |0i (solid blue line) and
excited state |1i (dashed blue line), respectively. These blue lines represent
the instability boundaries, E¼Eth, where the number of steady-state
solutions to equation (1) changes. The two panels on the right are
measured [I,Q]-quadrature voltage histograms of the device output for the
pump bias point indicated by the circles, revealing two different oscillator
states: outside of the region of parametric oscillations, the resonator is
quiet (|A|2¼0). Within the region, the resonator has two oscillating states
(|A|240), with a phase difference of p radians.
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q
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2✏ we obtain,

H± = (2�� !)a†a+
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✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
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�2�( k
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�2�( k

2 )
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k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2
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aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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The protocol consists in: (i) Apply a constant mag-
netic flux bias � ' ⇡/4 to the SQUID. (ii) Apply a
pump at frequency !p ' 2[!r(⇡/4) � �]. This allows
to work at ! ' �, where the QFI is maximal. (iii) Per-
form homodyne detection of the output signal. From the
input-output theory, we have that the resonator output
mode is âout =

p
2� â � âin, where âin is the input mode

assumed to be in the vacuum [60]. By applying the right
temporal filter at the output mode, one can retrieve the
same statistics of the intracavity mode [61, 62]. With
this premise, the SNR for output mode is the same as
the one derived for the intracavity mode.
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Let us assume an independent measurement every 2⇡/�,
and a measurement time of half second. This means that
we perform a total of M = � Hz�1/(4⇡) measurements.
It follows that the magnetometer sensitivity is
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for �0 . 0.05 [56]. Notice that since
p

� = ⇥(N�1) for
�/� . 10�2, the magnetometer reaches the Heisenberg
scaling in this regime. A typical value-set of parameters
easily reachable in an experiment is �0 ' 0.05, !�/4 '
2⇡ ⇥ 10 GHz, �0 ' 2⇡ ⇥ 100 MHz, and � ' 2⇡ ⇥ 4 MHz,
for which we have that �/� ' 10�2. With these values,

we achieve a sensitivity of around 6 ⇥ 10�7
p

Hz�1, that
can be improved by going at higher resonator frequencies,
or by designing circuits with lower �0 and �0, as shown
in Eq. (6).

Dispersive qubit readout.— We now discuss an appli-
cation of the Kerr resonator for superconducting-qubit
readout. By dipersively coupling a qubit to the resonator
Hamiltonian in Eq. (1), the Hamiltonian becomes [56]

Ĥdisp/~ = ĤKerr/~ + (!r + �)|eihe| + �!|eihe|â†â. (7)

Here, �! = g2/� is a frequency-shift that depends on
the qubit-resonator coupling g and the qubit-to-resonator
detuning � [63]. When the qubit is in its excited state
|ei, a frequency-shift is induced onto the resonator. The
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FIG. 3. (a) Map of the error probabilities with respect
to �! = g2/� and ✏, in units of �. The map is drawn by
setting ! = 0 and �/� = 0.04. The dashed lines represent
di↵erent values of the dispersive parameter ⌘ = N�!2/(4g2),
where N = max{N|ei, N|gi} = N|gi depends monotonically
on ✏, and we have fixed g/� = 102 to be in the strong—but
not ultrastrong—coupling regime. The parameter ⌘ should
be small enough in order for the dispersive approximation to
hold, and to minimize the disturbance on the qubit in the
measurement stage. For each dashed line, there is a sweet
point corresponding to a minimal error probability. For ⌘ =
10�2, we can reach error probability values as low as 10�4

if the optimal measurement is performed. (b) Homodyne
detection performs well at the optimal point, achieving an
error probability of 10�3. The inset shows the separation
in time of hx̂2

'i for the normal and symmetry-broken phases.
The steady-state value is reached at �t ' 10.

Hamiltonian Ĥdisp can be derived by applying perturba-
tion theory to the full qubit-resonator Hamiltonian, for
g/� ⌧ 1. The dispersive approximation holds as long as
g2N/(4�2) ⌘ ⌘ ⌧ 1, where N is the number of photons
in the resonator. Notice that a small ⌘ also minimizes the
disturbance induced to the qubit by the readout scheme.
In the following, we show how the presence of a DPT
leads to two highly distinguishable quantum states, that
can be used to perform high-fidelity qubit readout. Un-
like previous analysis, that use a semi-classical approxi-
mation to derive bona-fide estimations of the qubit read-
out fidelity [54], we perform numerical calculations using
the full quantum model. This is a great improvement
in the analysis, since the semi-classical model ignores
the presence of quantum fluctuations in proximity of the
phase transition, where highly squeezed states jeopar-
dize the quality of the protocol. An analysis of the full
quantum model is then inevitable to identify the set of
parameters maximizing the readout fidelity. Generally
speaking, the method consists in discriminating between
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FIG. 3. (a) Map of the error probabilities with respect
to �! = g2/� and ✏, in units of �. The map is drawn by
setting ! = 0 and �/� = 0.04. The dashed lines represent
di↵erent values of the dispersive parameter ⌘ = N�!2/(4g2),
where N = max{N|ei, N|gi} = N|gi depends monotonically
on ✏, and we have fixed g/� = 102 to be in the strong—but
not ultrastrong—coupling regime. The parameter ⌘ should
be small enough in order for the dispersive approximation to
hold, and to minimize the disturbance on the qubit in the
measurement stage. For each dashed line, there is a sweet
point corresponding to a minimal error probability. For ⌘ =
10�2, we can reach error probability values as low as 10�4

if the optimal measurement is performed. (b) Homodyne
detection performs well at the optimal point, achieving an
error probability of 10�3. The inset shows the separation
in time of hx̂2

'i for the normal and symmetry-broken phases.
The steady-state value is reached at �t ' 10.

Hamiltonian Ĥdisp can be derived by applying perturba-
tion theory to the full qubit-resonator Hamiltonian, for
g/� ⌧ 1. The dispersive approximation holds as long as
g2N/(4�2) ⌘ ⌘ ⌧ 1, where N is the number of photons
in the resonator. Notice that a small ⌘ also minimizes the
disturbance induced to the qubit by the readout scheme.
In the following, we show how the presence of a DPT
leads to two highly distinguishable quantum states, that
can be used to perform high-fidelity qubit readout. Un-
like previous analysis, that use a semi-classical approxi-
mation to derive bona-fide estimations of the qubit read-
out fidelity [54], we perform numerical calculations using
the full quantum model. This is a great improvement
in the analysis, since the semi-classical model ignores
the presence of quantum fluctuations in proximity of the
phase transition, where highly squeezed states jeopar-
dize the quality of the protocol. An analysis of the full
quantum model is then inevitable to identify the set of
parameters maximizing the readout fidelity. Generally
speaking, the method consists in discriminating between
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mation to derive bona-fide estimations of the qubit read-
out fidelity [54], we perform numerical calculations using
the full quantum model. This is a great improvement
in the analysis, since the semi-classical model ignores
the presence of quantum fluctuations in proximity of the
phase transition, where highly squeezed states jeopar-
dize the quality of the protocol. An analysis of the full
quantum model is then inevitable to identify the set of
parameters maximizing the readout fidelity. Generally
speaking, the method consists in discriminating between

Qubit degradation is proportional to:

4

where the pump-induced non-linearity is small. The
non-linearity depends on the magnetic field as �(�) '
�0�3

0
/| cos3(�)|, where �0 is a constant, given by the cir-

cuit geometry and materials, which describes the Kerr
non-linearity dependence with � [55]. It is then con-
venient to work in the point � ' ⇡/4, where � is mini-
mized. We can also set � ' const., by working in the limit
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0
�0/!�/4 ⌧ 1, which ensures the relation
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to hold.

The protocol consists in: (i) Apply a constant mag-
netic flux bias � ' ⇡/4 to the SQUID. (ii) Apply a
pump at frequency !p ' 2[!r(⇡/4) � �]. This allows
to work at ! ' �, where the QFI is maximal. (iii) Per-
form homodyne detection of the output signal. From the
input-output theory, we have that the resonator output
mode is âout =

p
2� â � âin, where âin is the input mode

assumed to be in the vacuum [60]. By applying the right
temporal filter at the output mode, one can retrieve the
same statistics of the intracavity mode [61, 62]. With
this premise, the SNR for output mode is the same as
the one derived for the intracavity mode.

Since ! = !r �!p/2, a change of � by a small amount
�� induces a shift on the parameter ! ! ! + @!r

@�
��.

Therefore, the uncertainty of the detector over M in-
dependent measurements can be estimated ��|�'⇡/4 '
hp
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���@!r
@� |�'⇡/4

���
i�1

. Let us consider the regime

�/� . 10�2, for which S!'� ' c(��)�1, see Fig. 2(a).
Let us assume an independent measurement every 2⇡/�,
and a measurement time of half second. This means that
we perform a total of M = � Hz�1/(4⇡) measurements.
It follows that the magnetometer sensitivity is

��p
Hz

. 6.5 ⇥
p

�0�0

!�/4

. (6)

for �0 . 0.05 [56]. Notice that since
p

� = ⇥(N�1) for
�/� . 10�2, the magnetometer reaches the Heisenberg
scaling in this regime. A typical value-set of parameters
easily reachable in an experiment is �0 ' 0.05, !�/4 '
2⇡ ⇥ 10 GHz, �0 ' 2⇡ ⇥ 100 MHz, and � ' 2⇡ ⇥ 4 MHz,
for which we have that �/� ' 10�2. With these values,

we achieve a sensitivity of around 6 ⇥ 10�7
p

Hz�1, that
can be improved by going at higher resonator frequencies,
or by designing circuits with lower �0 and �0, as shown
in Eq. (6).

Dispersive qubit readout.— We now discuss an appli-
cation of the Kerr resonator for superconducting-qubit
readout. By dipersively coupling a qubit to the resonator
Hamiltonian in Eq. (1), the Hamiltonian becomes [56]

Ĥdisp/~ = ĤKerr/~ + (!r + �)|eihe| + �!|eihe|â†â. (7)

Here, �! = g2/� is a frequency-shift that depends on
the qubit-resonator coupling g and the qubit-to-resonator
detuning � [63]. When the qubit is in its excited state
|ei, a frequency-shift is induced onto the resonator. The

FIG. 3. (a) Map of the error probabilities with respect
to �! = g2/� and ✏, in units of �. The map is drawn by
setting ! = 0 and �/� = 0.04. The dashed lines represent
di↵erent values of the dispersive parameter ⌘ = N�!2/(4g2),
where N = max{N|ei, N|gi} = N|gi depends monotonically
on ✏, and we have fixed g/� = 102 to be in the strong—but
not ultrastrong—coupling regime. The parameter ⌘ should
be small enough in order for the dispersive approximation to
hold, and to minimize the disturbance on the qubit in the
measurement stage. For each dashed line, there is a sweet
point corresponding to a minimal error probability. For ⌘ =
10�2, we can reach error probability values as low as 10�4

if the optimal measurement is performed. (b) Homodyne
detection performs well at the optimal point, achieving an
error probability of 10�3. The inset shows the separation
in time of hx̂2

'i for the normal and symmetry-broken phases.
The steady-state value is reached at �t ' 10.

Hamiltonian Ĥdisp can be derived by applying perturba-
tion theory to the full qubit-resonator Hamiltonian, for
g/� ⌧ 1. The dispersive approximation holds as long as
g2N/(4�2) ⌘ ⌘ ⌧ 1, where N is the number of photons
in the resonator. Notice that a small ⌘ also minimizes the
disturbance induced to the qubit by the readout scheme.
In the following, we show how the presence of a DPT
leads to two highly distinguishable quantum states, that
can be used to perform high-fidelity qubit readout. Un-
like previous analysis, that use a semi-classical approxi-
mation to derive bona-fide estimations of the qubit read-
out fidelity [54], we perform numerical calculations using
the full quantum model. This is a great improvement
in the analysis, since the semi-classical model ignores
the presence of quantum fluctuations in proximity of the
phase transition, where highly squeezed states jeopar-
dize the quality of the protocol. An analysis of the full
quantum model is then inevitable to identify the set of
parameters maximizing the readout fidelity. Generally
speaking, the method consists in discriminating between
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on the resonator24,25. When the JPO is being pumped above the
threshold for parametric oscillation, with amplitude E and
frequency detuning, d, then a change of qubit state effectively
pulls the resonator to a different value of the detuning, outside of
the region of parametric oscillations—see Fig. 1b. We denote the
qubit-state-dependent detunings by d|0i¼ d" w and d|1i¼ dþ w.
The resulting mapping of the qubit state onto the average number
of photons in the resonator provides us with a qubit-state
read-out mechanism, which we exploit in this work.

Characterization of qubit and JPO. The device and cryogenic
experimental set-up are depicted in Fig. 1a. The sample is
thermally anchored to the mixing chamber of a dilution
refrigerator with a base temperature of 10mK. The parametric
l/4 resonator (in blue) is capacitively coupled with the trans-
mission line (Cc¼ 11.9 fF), yielding an external quality factor
Qext¼or/2G0¼ 2555. A transmon qubit (in red) is also coupled
near this end of the resonator.

The resonator output signal is amplified using a 4–8GHz high-
electron-mobility transistor amplifier, with a noise temperature
TN¼ 2.2 K, followed by two room-temperature amplifiers. We
detect the outgoing signal using heterodyne mixing. The signal is
first downconverted to a frequency (oRF"oLO)/2p¼ 187.5MHz;
then, the [I,Q]-quadrature voltages are sampled at 250MS s" 1,
before they are digitally downsampled at a rate of 20MS s" 1.

We first characterize the transmon spectroscopically—see
Fig. 2a—from which we extract the Josephson and charging
energies, EJ/2p¼ 9.82GHz and EC/2p¼ 453MHz, respectively.
From the vacuum Rabi splitting, we extract a qubit" resonator
coupling rate g01/2p¼ 46MHz—see Fig. 2b.

Next, we fit the frequency tuning curve of the resonator (with
the qubit in the |0i-state) to the relation

o 0j i
r Fð Þ ¼ or Fð Þ" g201=D Fð Þ; ð2Þ

where F¼ pFd.c./F0 denotes the static flux bias, normalized to the
magnetic flux quantum. The effective dispersive shift due to the
qubit is

w Fð Þ ¼ " g201
D Fð Þ

EC
D Fð Þ"EC

! "
; ð3Þ
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Figure 1 | Experimental set-up and read-out mechanism. (a) Schematic of
the cryogenic microwave reflectometry set-up. The transmon qubit (red) is
capacitively coupled with the coplanar waveguide parametric resonator
(blue). The input and output flows of photons are denoted |B|2 and |C|2,
respectively, whereas the number of photons in the resonator is denoted
|A|2. The output signal is acquired using heterodyne detection of the
amplified microwave signal. The components drawn in lighter grey are
those that are rendered unnecessary by the JPO read-out method, thereby
offering a simplified experimental set-up (see text). (b) Parametric
oscillation regions for the qubit ground state |0i (solid blue line) and
excited state |1i (dashed blue line), respectively. These blue lines represent
the instability boundaries, E¼Eth, where the number of steady-state
solutions to equation (1) changes. The two panels on the right are
measured [I,Q]-quadrature voltage histograms of the device output for the
pump bias point indicated by the circles, revealing two different oscillator
states: outside of the region of parametric oscillations, the resonator is
quiet (|A|2¼0). Within the region, the resonator has two oscillating states
(|A|240), with a phase difference of p radians.
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Figure 2 | Combined resonator-qubit frequency spectra. (a) Qubit
spectroscopy was used to map out the transmon spectrum (in red),
whereas the resonator spectrum (in blue) was extracted using standard
reflectometry. The solid red and grey lines are fits. The dashed grey line, at
resonator flux bias F¼0.185p, indicates the bias point at which we later
demonstrate the read-out method. (b) Vacuum Rabi splitting around the
flux bias point where the transmon frequency crosses that of the resonator,
indicated by the grey box in a. The minimum frequency splitting yields a
qubit–resonator coupling g01/2p¼46MHz.
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