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2.3 Qubit-cavity interaction

mode has maximum electromagnetic field amplitude at the center of the cavity (z = L/2).

Here, we study the interaction between this mode of the cavity (as a quantum harmonic oscil-

lator) and a two-level quantum system (qubit) which is represented by Hamiltonian (2.2.13).

Assume that we place the qubit right at the center of the cavity. The dimension of the qubit

is much smaller than the dimension of the cavity therefore with a good approximation, the

qubit only interacts with the electromagnetic field at z = L/2 as depicted1 in Figure 2.10.
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Figure 2.10: The qubit-cavity interaction: The qubit is placed at the center of the cavity where the

electromagnetic field is maximum for the first mode of the cavity. The qubit interacts with the electric field

via its electric dipole d.

The qubit interacts via its electric dipole moment to the electric field of the cavity via

the interaction Hamiltonian,

Hint = �d̂ · Êx(
L

2
, t) ,where d̂ =

✓
0 d

d
⇤ 0

◆
. (2.3.1)

The parameters d is the magnitude of the dipole of the qubit which can be in any direction.

Let’s define dx as the magnitude of the qubit dipole aligned with electric field of the cavity.

Then the e↵ective dipole operator can be represented as d̂ = dx�x = dx(�+ + ��) where �+

(��) are the raising (lowering) operators for the qubit. Without loss of generality, we can

assume dx is real2. Then the interaction Hamiltonian reads,

Hint = �g(â+ â
†)(�+ + ��), (2.3.2)

where we use Equation (2.1.7a) and define g = dxE0 to quantify the interaction strength or

1The assumption that the qubit interacts only with the electromagnetic field at the center of the cavity
is a classical interpretation. In quantum picture, each photon is a packet of energy extended to the entire
cavity. But this classical picture is very clear to convey the fact that by placing the qubit at the center of
the cavity, statistically, the qubit experiences a stronger electromagnetic field.

2Note, the complex dx means that the electric dipole has non-zero moment along �y.
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2.3 Qubit-cavity interaction

qubit-cavity coupling energy1.

2.3.1 Jaynes-Cummings model

Now we have all the pieces to describe the combined qubit-cavity system. Note that the

qubit Hamiltonian (Eq. 2.2.13) by itself has two eigenstates {|gi, |ei} corresponding to two

eigenvalues (energies) {⌥!q/2}. Similarly, a single cavity mode Hamiltonian (Eq. 2.1.8) by

itself has an infinite number of eigenstates {|ni} with eigenvalues {!c(n+1/2)} correspond-

ing to n photons in that mode. Here we are interested to know what are the eigenstates

and eigenvalues of the hybrid system of the cavity and qubit combined via the interaction

Hamiltonian (Eq. 2.3.2). The total Hamiltonian2 has three parts,

HRabi = !c(â
†
â+

1

2
)� 1

2
!q�z � g(â+ â

†)(�� + �+). (2.3.3)

In the case of no interaction between qubit and cavity (g = 0) the eigenstates of the qubit-

cavity system are simply the tensor product of the cavity and qubit eigenstates {|gi|ni, |ei|ni}
which are called bare states or the bare basis and, obviously, with eigenvalues that are simply

the sum of eigenvalues for each qubit and cavity eigenstates, {±!q/2 + !c(n+ 1/2)}.

|gi|0i ! qubit in ground state, no photons in the cavity (2.3.4)

|gi|n+ 1i ! qubit in ground state, n+ 1 photons in the cavity (2.3.5)

|ei|ni ! qubit in excited state, n photons in the cavity (2.3.6)

However bare states no longer are the energy eigenstates for the system when the qubit

and cavity interact (g 6= 0). Yet, we can represent the total Hamiltonian in the bare basis

and attempt to diagonalize it to find its eigenstates and eigenvalues. Before we do this,

we simplify the interaction Hamiltonian by the rotating wave approximation (RWA). This

approximation is valid in most practical situations where the coupling strength is much less

than both the qubit and cavity frequency, g ⌧ !q,!c, and also |!c�!q| ⌧ |!c+!q|. Having
this situation in mind, let’s revisit the interaction Hamiltonian where we have four terms,

Hint ) â
†
�� + â�+ + â

†
�+ + â�� (2.3.7)

The first term describes ‘the decay of the qubit and creation of a photon for the cavity’ and

second term accounts for ‘an excitation of the qubit and annihilation of a photon in the

cavity’. These processes somehow “conserve” the total energy in the system since the energy

1If we place the qubit o↵-center the coupling g would be smaller. In fact, the placement of the qubit
inside the cavity is, to some extent, a knob to adjust the qubit-cavity coupling.

2Here we refer to it as the Rabi Hamiltonian —the JC Hamiltonian comes from the Rabi Hamiltonian
once taking the RWA.
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dipole interactionHint= -(γµS)・B peculiarities of spin systems: 

-dipolar coupling with single spin is weak 
-diamagnetic term can be neglected (?) 
-applications specifically developed for magnetic systems 
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change would be ±(!c � !q), which is much less that the total energy in the system even

in the few photon regime where Etot ⇠ !c + !q. However, the last two terms correspond

to ‘the excitation (decay) of the qubit and creation (annihilation) of a photon for cavity’

which requires a relatively substantial energy change ±(!c + !q) in the system, especially

when we have only a few photons in the system. This means that the last two processes are

much less likely to occur compared to the first two processes so we can simply ignore those

terms1. This also can be understood from energy-time uncertainty principle which implies

that the last two processes happen on much faster time-scales and normally are averaged

out compared to the first two processes2. Therefore with this rotating wave approximation

(RWA) we obtain the Jaynes-Cummings Hamiltonian,

HJC = !c(â
†
â+

1

2
)� 1

2
!q�z � g(â†�� + â�+). (2.3.8)

Although the RWA simplifies the Hamiltonian, still we have to deal with an infinite dimen-

sional Hilbert space (since the number of photons n ranges from 0 ! 1) which means the

Hamiltonian is a semi-infinite matrix which makes it tricky to diagonalize. Normally in such

situation we truncate the Hilbert space at some point, but fortunately in this case we can

go around this problem and diagonalize the Hamiltonian in the infinite dimension Hilbert

space. If we use the bare basis to represent the HJC in the form of matrix we find,

HJC =

0

BBBBBBB@

1
2!c � !q

2 0 0 0 0 0

0 3
2!c � !q

2 g 0 0 0

0 g 3
2!c +

!q

2 0 0 0

...

0 0 0 0 (n+ 1
2 )!c � !q

2

p
n+ 1g

0 0 0 0
p
n+ 1g (n+ 1

2 )!c +
!q

2

1

CCCCCCCA

, (2.3.9)

which shows the Hamiltonian is block-diagonal and all blocks follow a general form (except

the first block which has only one element 1
2!c�!q

2 corresponding to the absolute ground state

of the system). Having a block-diagonal Hamiltonian makes it easy to find its eigenvalues.

We only need to diagonalized individual blocks and the resulting eigenvalues of each block

indeed are the eigenvalues of the entire Hamiltonian. For each block Mn we have,

Mn =

✓
(n+ 1

2)!c � !q

2

p
n+ 1gp

n+ 1g (n+ 1
2)!c +

!q

2

◆
, (2.3.10)

1One would expect RWA breaks in the regime of many photons. See for example [67, 68] for beyond
RWA.

2For example, see chapter 4 of the Ref. [61] for more detailed discussion of RWA
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2.3 Qubit-cavity interaction
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†)(�� + �+). (2.3.3)

In the case of no interaction between qubit and cavity (g = 0) the eigenstates of the qubit-

cavity system are simply the tensor product of the cavity and qubit eigenstates {|gi|ni, |ei|ni}
which are called bare states or the bare basis and, obviously, with eigenvalues that are simply

the sum of eigenvalues for each qubit and cavity eigenstates, {±!q/2 + !c(n+ 1/2)}.

|gi|0i ! qubit in ground state, no photons in the cavity (2.3.4)

|gi|n+ 1i ! qubit in ground state, n+ 1 photons in the cavity (2.3.5)

|ei|ni ! qubit in excited state, n photons in the cavity (2.3.6)

However bare states no longer are the energy eigenstates for the system when the qubit

and cavity interact (g 6= 0). Yet, we can represent the total Hamiltonian in the bare basis

and attempt to diagonalize it to find its eigenstates and eigenvalues. Before we do this,

we simplify the interaction Hamiltonian by the rotating wave approximation (RWA). This

approximation is valid in most practical situations where the coupling strength is much less

than both the qubit and cavity frequency, g ⌧ !q,!c, and also |!c�!q| ⌧ |!c+!q|. Having
this situation in mind, let’s revisit the interaction Hamiltonian where we have four terms,

Hint ) â
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�� + â�+ + â
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Figure 2.11: Dressed states vs bare states: The panels illustrate the dressed states of the qubit-cavity

system for di↵erent qubit-cavity detunings in comparison with the bare states (refer to the main text for a

more detailed description). Note that this illustration is not accurate and lacks some details but we rather

to avoid them here.

polaritons have acquired equal photon and qubit character as depicted by color-coded bars

in panel 3. If we further increase the energy level of the qubit (see panel 4) then again we get

dressed states. Note that in panel 4, unlike in panel 3, the lower (upper) polariton has more

photon (qubit) character. By increasing the detuning further, as in panel 5, we e↵ectively

decouple the qubit and cavity and the dressed states again approach the bare states. If we

keep increasing the qubit frequency even further then the qubit energy will approach the

higher level of the cavity and we would see another avoided crossing corresponding to n = 1.

Every time qubit level crosses one of the cavity levels, we may expect an avoided crossing

and hybridization1.

It is convenient to plot transition energy versus detuning since (as we will see in Chap-

ter 3) we normally characterize the system by measuring the transition frequencies by doing

1Considering the higher energy levels of the cavity one might think that it is also possible that qubit
level couples to two or multiple cavity energy levels at the same time. This is true, but usually, this e↵ect is
only significant when the qubit-cavity coupling is so strong (g ⇠ !c,!q) that qubit and cavity energy levels
push each other even when they are far detuned. This regime is known as ultra strong coupling [69, 70].
But normally the coupling rate g ⌧ !c,!q. Therefore, in order to have hybridization the qubit energy has
to be very close to the cavity energy (� ⌧ !c,!q). In our case, we can safely assume that qubit e↵ectively
couples only to one cavity energy level at a time. However, I should warn you that in our description of
the avoided crossing which is represented in Figure 2.11, we have ignored the higher transmon energy levels
which would make the situation much more complicated. Considering the transmon as a two-level system is
good for intuition, but to be accurate one must include more transmon levels.
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spectroscopy. For example, when n = 0 we have,

E⌥ � Eg = !c ⌥
1

2

p
4g2 +�2 +�/2. (2.3.17)

In Figure 2.12, we plot the energy E± �Eg versus detuning which clearly shows the avoided

crossing. The transition energy levels are color coded so that again red (blue) is the qubit-

(photon-) like transition.
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Figure 2.12: Avoided crossing: The transition energy from higher and lower dressed states to the ground

state versus the detuning �. The transition energy is scaled by the energy of the cavity !c and the detuning

is scaled by the coupling rate g. The dashed lines indicate the bare states’ transition. Note that
you can somehow see a similar avoided-crossing curve in Figure 2.11 by connecting the upper
(lower) dressed states in di↵erent detunings together.

In this section, we learned that if we put a qubit inside a cavity, the energy levels hybridize

and we have dressed states. Yet, just as we considered transmon as a two-level system (TLS)

by addressing only lower transition, here also we consider the ground state and the lower

dressed state as our new qubit.

2.3.2 Dispersive approximation

In this section, we perform another approximation to the interaction Hamiltonian. This

approximation is valid in the regime that cavity and qubit are far detuned � � g. In such

situations, the interaction is relatively weak. In principle, in this regime, the cavity and qubit

do not directly exchange energy unlike what we explicitly have in the interaction term1 in

1Note that this doesn’t mean that in this limit the JC interaction term is not valid. It means that the
e↵ect of the coupling is so weak such that we can approximately represent the Hamiltonian in a simpler
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where n = 1, 2, . . .. The eigenstates ofMn and |gi|0i corresponding to n = 0, form a complete

set of eigenstates for the entire qubit-cavity system. For the eigenvalues we have,

Eg = ��

2
(2.3.11)

E⌥ = (n+ 1)!c ⌥
1

2

p
4g2(n+ 1) +�2. (2.3.12)

where � = !q � !c. The eigenstate associated with each of these eigenvalues are called the

dressed states of the qubit and cavity,

|0,�i = |gi|0i (2.3.13)

|n,�i = cos(✓n)|gi|n+ 1i � sin(✓n)|ei|ni (2.3.14)

|n,+i = sin(✓n)|gi|n+ 1i+ cos(✓n)|ei|ni (2.3.15)

where ✓n = 1
2 tan

�1(2g
p
n+ 1/�) which quantifies the “level of hybridization”. In the limit

of � ! 0 where qubit and cavity have a the same energy we have ✓n = ⇡/4 and the dressed

states are in maximum hybridization,

|n,⌥i =
1p
2
(|gi|n+ 1i ⌥ |ei|ni) , (2.3.16)

which means each of the dressed states has a 50 %-50 % characteristic of the cavity photon

and qubit excitations. These states are called polaritons. The energy di↵erence between the

first two polariton states is 2g.

A nice way to look at dressed state energy levels is by comparing them to the correspond-

ing uncoupled system energy levels, the bare states. For that, consider Figure 2.11 where

we display the energy levels of an uncoupled qubit-cavity system compared to the dressed

state energy levels for di↵erent values of the qubit-cavity detuning. The bare state energy

levels are depicted by solid black lines. The dressed states are depicted by bars that are

color-coded by blue (red) for cavity- (qubit-) like states. In the first panel, the qubit and

cavity are far detuned (� ⌧ 0) which means ✓n ' 0 and the e↵ective coupling is negligible.

Therefore the dressed states energy levels almost overlap with the uncoupled cavity-quit

state, the bare states (as depicted in panel 1). In the second panel, we change the energy

level for the qubit. The detuning � is still negative but it is getting smaller and smaller

in terms of magnitude. The dressed states start pushing away each other and deviate from

the corresponding bare states. In this situation, ✓n 2 (0, ⇡/4) and the upper dressed state

acquires some qubit character, and similarly, the lower dressed state acquire some photon

character. In panel three � = 0 and the hybridization is its maximum level, ✓n = ⇡/4

and the dressed states (which we now call polaritons) push each other away and deviate

maximally from the bare states. The separation between two polaritons is 2g. Now both
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However bare states no longer are the energy eigenstates for the system when the qubit

and cavity interact (g 6= 0). Yet, we can represent the total Hamiltonian in the bare basis

and attempt to diagonalize it to find its eigenstates and eigenvalues. Before we do this,

we simplify the interaction Hamiltonian by the rotating wave approximation (RWA). This

approximation is valid in most practical situations where the coupling strength is much less

than both the qubit and cavity frequency, g ⌧ !q,!c, and also |!c�!q| ⌧ |!c+!q|. Having
this situation in mind, let’s revisit the interaction Hamiltonian where we have four terms,

Hint ) â
†
�� + â�+ + â

†
�+ + â�� (2.3.7)

The first term describes ‘the decay of the qubit and creation of a photon for the cavity’ and

second term accounts for ‘an excitation of the qubit and annihilation of a photon in the

cavity’. These processes somehow “conserve” the total energy in the system since the energy

1If we place the qubit o↵-center the coupling g would be smaller. In fact, the placement of the qubit
inside the cavity is, to some extent, a knob to adjust the qubit-cavity coupling.

2Here we refer to it as the Rabi Hamiltonian —the JC Hamiltonian comes from the Rabi Hamiltonian
once taking the RWA.
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Strong and ultrastrong coupling between matter and light

Forn-Diaz et al. Rev. Mod. Phys. 91, 025005 (2019)

Kockum et al. Nat. Rev. Phys. 1, 20 (2019)

Ultrastrong coupling (USC) and deep strong coupling regimes:

• processes that do not conserve the number of interactions and ground state that contains virtual excitations

• potential applications in quantum technology, nonlinear optics, modified chemical reactions and enhancement of various quantum phenomena



Magnetic Coupling strength
Single spin coupling: gs ∝ Bac

Coupling depends on the effective overlapping of the spin density and the e.m. excitation, that is on the filling factor: 

g=gs√N collective coupling
Cavity QED Based on Collective Magnetic Dipole Coupling:

Spin Ensembles as Hybrid Two-Level Systems

Atac Imamoğlu
Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland

(Received 17 September 2008; published 27 February 2009)

We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave

stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is

described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave

excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest

eigenstates of the coupled spin wave–microwave cavity–Josephson junction system define a hybrid two-

level system. The proposal described here enables new avenues for nonlinear optics using optical photons

coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with

magnetic dipole transitions also opens up the possibility of extending quantum information processing

protocols to spins in silicon or graphene, without the need for single-spin confinement.

DOI: 10.1103/PhysRevLett.102.083602 PACS numbers: 42.50.Pq

As compared to the coupling of a single emitter, the
strength of optical excitations out of an ensemble of two-
level emitters is enhanced by the square root of the number
of emitters (

ffiffiffiffiffiffi
Ns

p
). This collective enhancement of light-

matter coupling in free space has played a central role in
quantum memory and repeater protocols [1]. In the context
of cavity quantum electrodynamics (QED), the

ffiffiffiffiffiffi
Ns

p
en-

hancement comes at the expense of the desirable nonline-
arity of the coupled cavity-emitter system [2]. Never-
theless, strong electric-dipole coupling of a number of
diverse systems including interband excitons [3], intersub-
band plasmons [4], and cold-atomic ensembles [5] to high
quality (Q) factor optical cavities have been demonstrated:
the signature of strong coupling for these systems is the ap-
pearance of vacuum Rabi splitting of two dressed modes,
each with a harmonic spectrum. Direct magnetic dipole
coupling of spins to cavity modes, on the other hand, have
been totally ignored, even though collective excitations out
of an ensemble of !106 spins could easily reach a corre-
sponding linear strong coupling regime using the super-
conducting microstrip (SCM) cavities recently realized in
the context of circuit-QED experiments [6,7].

In this Letter, we describe how two-level hybrid-spin
qubits can be defined using magnetic dipole coupling of an
ensemble of spins to SCM cavities with a built-in nonlinear
element such as a transmon qubit [8]. We consider a
geometry where the transmon qubit, with ground and
excited states denoted by jai and jbi, is introduced at an
electric-field maximum of the SCM cavity. In contrast, an
ensemble of spins is placed at a location where the mag-
netic field is maximum (Fig. 1). The Hamiltonian of the
combined system in the interaction picture is given by

Ĥ¼@gcð!̂baâce
$i"tþH:c:Þþ@gmXNs

i¼1

ð!̂i
$âce

$i!tþH:c:Þ;

(1)

where !̂ba ¼ jbihaj and !̂i
$ denotes the spin lowering

operator of the ith spin. âc is the annihilation operator of
the SCM cavity mode. gc (gm) denotes the electric (mag-
netic) dipole coupling strength of the transmon qubit
(single spin) to the SCM cavity mode. We assume here
that the transmon qubit (spins) is (are) red detuned from the
cavity mode by " (!).
Before proceeding, we highlight the recent work discus-

sing a very similar scenario where an ensemble of polar

L

ensemble of spins

d

transmon qubit

FIG. 1 (color). Schematic of the system consisting of an en-
semble of spins coupled to the quantized magnetic field of a
superconducting microstripline cavity with d! 10 #m and L!
1 cm. The length of the thin (orange) lines indicates the strength
of the cavity-mode electric field. The thick (blue) lines that
encircle the center conductor depict the magnetic field lines at
the locations where their strength is maximum. The presence of a
transmon qubit at an electric-field maximum ensures that the
cavity has a large nonlinearity. The ensemble of spins could
either be that of electrons in the silicon substrate or cold ground-
state atoms trapped !10 #m above the cavity structure.
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how can we increase the magnetic coupling?

gs  ˜   Hz

if N ˜ 1012 
g=gs√N ˜  MHz 

if N ˜ 1018 
g=gs√N ˜  GHz
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C. Bonizzoni, A. Ghirri, M. Affronte Advances in Physics X 3:1, 1435305,  
DOI: 10.1080/23746149.2018.1435305 (2018)

CW spectroscopy

A Ghirri, C. Bonizzoni, D. Gerace, S. Sanna, A. Cassinese, and M. Affronte 
 Applied Physics Letters 106, 184101 (2015); doi: 10.1063/1.4920930
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Paramagnetic centers 
Molecular spins 
electron spin coherence> μs 

Nature doi:10.1038/

Cu(mnt)2 

Wedge et al. PRL 108, 107204 (2012)

Cr7Ni 

malonyl radical

M. Atzori et. al. JACS 138, 2154-2157 (2016)

VOPc 

Molecular Spins in the Context of Quantum Technologies 
 A. Ghirri, A. Candini, M. Affronte  
Magnetochemistry 3(1), 12, (2017)  
doi:10.3390/magnetochemistry3010012

line width  ˜10MHz

http://dx.doi.org/10.3390/magnetochemistry3010012%22%20%5Ct%20%22_blank


Paramagnetic centres: 
Radical DPPH

di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium

gc >> κ, γs
spin ensemble: 


γs=3 MHz @ 77 K, γs=14 MHz @ 2 K

resonator: QL=20000; κ≃0.5 MHz

Applied Physics Letters 106, 184101 (2015); doi: 10.1063/1.4920930
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VOPc

 

Neff ≈ 2∙1017

Ω = 25 ± 4 MHz 
γ = 32 ± 5 MHz 
κ ≈ 1.0 ± 0.2 MHz 

Ωs = 0.05 ± 0.01 Hz

HIGH COOPERATIVITY

10% PELLETS VOPc:TiOPc
S = ½ system (VO+2) 

M. Atzori et. al. JACS 138, 2154-2157 (2016)

C. Bonizzoni et al. Scientific Reports 7, (2017) 13096  

Ω=gs√N collective coupling



MOLECULAR SPINS EMBEDDED IN SUPERCONDUCTING CIRCUITSlong coherence time 
strong el-ph coupling

C. Bonizzoni, A. Ghirri, M. Affronte Advances in Physics X 3:1, 1435305,  
DOI: 10.1080/23746149.2018.1435305 (2018)



spin waves in ordered magnets
For a mono domain sample and uniform mode we can use 
Landau-Liftshitz-Gilbert Eq. as a macroscopic description of 
precession of uniform magnetization vector:

Heff=Hmagnst+Hexch+Hanis+Hext

Shape effects are taken into account by the demagnetization factor:

  

€ 

dM
dt

= γ
! 

M ×
! 
H eff −

λ
Ms

! 
M × (

! 
M ×

! 
H eff )
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A comparison with our numerical results allows us to es-
timate the accuracy of these approximations. Finally, in
Section 4 we present our conclusions and give an outlook
for further research.

2 Effective Hamiltonian for YIG films

Experimental and theoretical research on YIG has a long
history, as reviewed, for example, in reference [26]. Some
distinct advantages of YIG are that this material can be
grown in very pure crystals and has a very narrow fer-
romagnetic resonance line, indicating very low spin-wave
damping. Actually, YIG is a ferrimagnet at accessible
magnetic fields and has a rather complicated crystal struc-
ture with space group Ia3d (see Refs. [26,27]) and 20 mag-
netic ions in the primitive cell. Fortunately, on the energy
scales relevant to experiments [1–5,8–11] only the lowest
magnon band is important, so that we can describe the
physical properties of YIG at room temperature in terms
of an effective spin S quantum Heisenberg ferromagnet on
a cubic lattice with lattice spacing [27]

a = 12.376 Å. (1)

The effective Hamiltonian contains both exchange and
dipole-dipole interactions,

Ĥ = −1
2

∑

ij

JijSi · Sj − µHe ·
∑

i

Si

− 1
2

∑

ij,i!=j

µ2

|Rij |3
[
3(Si · R̂ij)(Sj · R̂ij) − Si · Sj

]
,

(2)

where the sums are over the sites Ri of the lattice and
R̂ij = Rij/|Rij | are unit vectors in the direction of
Rij = Ri −Rj = xijex + yijey + zijez. Here, µ = gµB is
the magnetic moment associated with the spins, where
g is the effective g-factor and µB = e!/(2mc) is the
Bohr magneton. The exchange energies Jij = J(Ri −Rj)
decay rapidly with distance, so that it is sufficient to in-
clude only nearest neighbour exchange couplings in equa-
tion (2), setting Jij = J if Ri and Rj are nearest neigh-
bours, and Jij = 0 otherwise. Note that we neglect surface
anisotropies which might be present in experiments, espe-
cially at the surface of the film which is attached to the
substrate. Experimentally, the material YIG is character-
ized by its saturation magnetization [28]

4πMS = 1750 G, (3)

and the exchange stiffness ρex of long-wavelength spin-
waves [29],

ρex

µ
=

JSa2

µ
≈ 5.17 × 10−13 Oe m2. (4)

If we arbitrarily set the effective g-factor equal to two [28]
so that µ = 2µB, we obtain from equations (3) and (4) for

Fig. 1. (Color online) Orientation of our coordinate system
for an infinitely long stripe of width w and thickness d. We
assume that the external magnetic field Heez is parallelto the
long axis (which we call the z-axis) of the stripe.

the effective spin

S =
MSa3

µ
≈ 14.2, (5)

and for the nearest neighbour exchange coupling

J = 1.29 K. (6)

Our above estimates for S and J differ slightly from the
values given in reference [30]. Note that the effective spin
S ≈ 14.2 is quite large, so that an expansion in powers
of 1/S is justified. Introducing the dipolar tensor Dαβ

ij =
Dαβ(Ri − Rj),

Dαβ
ij = (1 − δij)

µ2

|Rij |3
[
3R̂α

ijR̂
β
ij − δαβ

]

= (1 − δij)µ2 ∂2

∂Rα
ij∂Rβ

ij

1
|Rij |

, (7)

we can write our effective Hamiltonian (2) in the compact
form

Ĥ = −1
2

∑

ij

∑

αβ

[
Jijδ

αβ + Dαβ
ij

]
Sα

i Sβ
j − h

∑

i

Sz
i , (8)

where the z-axis of our coordinate system points into the
direction defined by the magnetic field He and we have
introduced the associated Zeeman energy,

h = µ|He|. (9)

We have thus related the set of parameters a, S, J, h ap-
pearing in our effective Hamiltonian to experimentally
measurable quantities.

To proceed, we restrict ourselves to the description
of an infinitely long stripe of width w and thickness
d = Na, consisting of N layers. For the stripe geome-
try shown in Figure 1 where the magnetic field points in
any direction parallel to the stripe the classical ground-
state is a saturated ferromagnet. Therefore we can expand
the Hamiltonian in terms of bosonic operators describ-
ing fluctuations around the classical groundstate, using
either the Holstein-Primakoff or Dyson-Maleev transfor-
mation [15,16]. The resulting bosonized spin Hamiltonian
is of the form

Ĥ = H0 +
∞∑

n=2

Ĥn. (10)

Equivalently, a microscopic description of spin waves an be obtained  by 
considering both N.N. exchange and dipole-dipole interactions:
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Abstract. Motivated by recent experiments on thin films of the ferromagnetic insulator yttrium-iron garnet
(YIG), we have developed an efficient microscopic approach to calculate the spin-wave spectra of these
systems. We model the experimentally relevant magnon band of YIG using an effective quantum Heisenberg
model on a cubic lattice with ferromagnetic nearest neighbour exchange and long-range dipole-dipole
interactions. After a bosonization of the spin degrees of freedom via a Holstein-Primakoff transformation
and a truncation at quadratic order in the bosons, we obtain the spin-wave spectra for experimentally
relevant parameters without further approximation by numerical diagonalization, using efficient Ewald
summation techniques to carry out the dipolar sums. We compare our numerical results with two different
analytic approximations and with predictions based on the phenomenological Landau-Lifshitz equation.

PACS. 75.10.Jm Quantized spin models – 75.30.Ds Spin waves – 05.30.Jp Boson systems

1 Introduction

In a recent series of experiments [1–5] Demokritov and
co-workers discovered strong correlations of highly occu-
pied magnon states in thin films of the magnetic insula-
tor yttrium-iron garnet (YIG) with stoichiometric formula
Y3Fe2(FeO4)3. They suggested an interpretation of their
results in terms of Bose-Einstein condensation of magnons
at room temperature. For a proper interpretation of these
experiments, a peculiar feature of the energy dispersion Ek

of the relevant magnon band in finite YIG films is impor-
tant: due to a subtle interplay between finite-size effects,
short-range exchange interactions, and long-range dipole-
dipole interactions, Ek exhibits a local minimum at a finite
wave-vector kmin, for a certain range of orientations of the
external magnetic field He relative to the sample. The ex-
istence of such a dispersion minimum has been predicted
by Kalinikos and Slavin [6,7] within a phenomenological
approach based on the Landau-Lifshitz equation. Unfortu-
nately, such a phenomenological approach does not pro-
vide a microscopic understanding of correlation effects,
which might be important to explain some aspects of ex-
periments probing the non-equilibrium behaviour of the
magnon gas in YIG [1–5,8–11]. This has motivated us
to study this problem within the framework of the usual
1/S-expansion for ordered quantum spin systems, which
is based on the bosonization of an effective microscopic
Heisenberg model using either the Holstein-Primakoff [12]
or the Dyson-Maleev transformation [13,14], and the sub-
sequent classification of the interaction processes in pow-
ers of the small parameter 1/S.

a e-mail: kreisel@itp.uni-frankfurt.de

The 1/S-expansion has been extremely successful
to understand spin-wave interactions in ordered mag-
nets [15,16]. Previously, several authors have used this
approach to calculate spin-wave spectra in ultrathin fer-
romagnetic films with exchange and dipole-dipole interac-
tions [17–20]. Moreover, interaction effects such as energy
shifts and damping of spin-waves in thin films have also
been calculated within the 1/S-expansion [21,22]. How-
ever, in order to apply this approach to realistic models
for experimentally relevant YIG films with a thickness of a
few microns (corresponding to a few thousand lattice spac-
ings), one has to evaluate numerically rather large dipolar
sums [23] to set up the secular matrix whose eigenvalues
determine the magnon modes, see equation (18) below.
We use here an efficient Ewald summation technique [24]
to carry out these summations, which enables us to calcu-
late the spin-wave dispersions of realistic YIG films. Given
our numerical results, we can assess the validity of vari-
ous analytical approximations such as the uniform mode
approximation [6,20,25] and the lowest eigenmode approx-
imation.

The rest of this paper is organized as follows: in
Section 2 we introduce the effective Heisenberg model
which we shall use to describe the experimentally relevant
magnon band in YIG. We set up the 1/S-expansion and
derive the secular equation which determines the magnon
dispersion. In Section 3 we present our results for the
magnon spectra of YIG. We first discuss our numerical
results, which are obtained by evaluating the roots of the
secular determinant without further approximation, using
the Ewald summation technique described in the appendix
to evaluate the necessary dipolar sums. We then discuss in
Sections 3.2 and 3.3 two approximate analytical methods
for obtaining the dispersion of the lowest magnon band.



YIG samples

Sample #2: YIG/GGG film with dimension  ; w= (5 & 20 μm) 
commercial from Matesi 

≈ 4𝑥3𝑚𝑚2

Sample #1: Bulk YIG Crystal, 
from Istambul kindly provided by R. Bulat

from Japan, kindly provided by G. Ruoso INFN

Spin wave excitations
Landau-Lifshitz-Gilbert equation: 

 
∂M
∂t

= − γμ0 (M × Heff) + α
Ms (M × ∂M

∂t )
Heff(r, t) = H0

ext(r) + hmw(r, t) + Hdd
eff + Hex

eff + . . .

Pirro et al. Nat. Rev. Mater. 6, 1114 (2021)

YIG sphere

s(Fe3+) = 5/2

Y3Fe5O12 (YIG) 
• Ferrimagnetic

• 

• Low Gilbert damping:


ρs = 4.22 × 1027 m−3

α ∼ 10−4 − 10−5
spin wave dispersion in bulk 

https://matesy.de/en/products/materials/yig-films


Spin waves in YIG film: characterisation by broadband stripline
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Dipole-Exchange Spin Wave modes
• Dipole-dipole and exchange spin interaction are considered, as well as electrodynamic and exchange boundary conditions

• Narrow CPW lines excite spin waves in a wide interval of wave vectors  
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• Different types of spin waves can make a contribution to the excited alternating magnetisation
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Increasing coupling strength through the effective VolumeYIG film in a linear CPW resonator

2gc ∼ 0.2 GHz
2gc ∼ 1.4 GHz

2gc ∼ 4 GHz

30 K, 0 dBm

CPW resonator, lateral size 600 µm

CPW resonator, lateral size 20 µm

CPW resonator, lateral size 20 µm
YIG/GGG film


thickness 5 µm

area 12 mm2

YIG/GGG film

thickness 5 µm

area 0.6 mm2

YIG/GGG film

thickness 5 µm

area 0.6 mm2

Ag microstrip resonator
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sample #1 
YIG/GGG film 

size: 4x3 mm2


thickness: 5 µm

central conductor lateral width 500 µm

fFMR
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; 


fFMR = γ Hext(Hext + Ms)

fn = fFMR + nΔ
γ = 28.02 GHz/T Ms = 0.245 T
Δ = 0.36 GHz2g ˜ 0.8GHz

linear resonator, lateral size 500μm

YIG/GGG film

thickness 5μm


area 12mm2



further tests with bulk samples

Inv. Anapole Resonator+ YIG sphere
linear Resonator+ YIG disk

radiation field focused in small volume (5μm)3 

-> USC not achieved

radiation field as CPW 

-> USC achieved but not larger than film

Comparison between YIG film#1 and #2

USC achieved with thicker film  (20μm)

but significant increase of the coupling

2g ˜ 4GHz
2g˜˜0.8GHz

High-Tc superconducting coplanar waveguide resonators

gext

YBCO

m
w

 in

m
w

 o
ut  CPW resonatorλ /2

gextgext

50 µm 500 µm

YBCO/sapphire

8x5 mm2 substrate

YBa2Cu3O7: Tc = 90 K

10 K 10 K

20 µm12 µm 12 µm
gs/h = 1

4 γebvac

bvac
YBCO 330 nm

sapphire 430 µm  at gs ≈ 10 Hz 10 GHz

x
y

z

YBCO thickness:  
330 nm

2g ˜ 4GHz



ESTIMATION OF NUMBER OF COUPLED SPINS

Number of spins is estimated starting from CST simulation of 
the resonant mode volume, using a 1:1 scale model filled with 
vacuum and with same sample dimension and position. 

𝑁𝑒𝑓𝑓 = 𝑁0𝑝(𝑇 ) = 𝜌𝑉𝑒𝑓𝑓𝑃(𝑇 ) ≈ 𝜌𝑉𝑒𝑓𝑓

From effective number of spins it is also possible to estimate the single spin coupling

 𝜌 = 4.22 ∙ 1027𝑠𝑝𝑖𝑛/𝑚3

Diameter (mm) Resonator ν_0  (GHz) Veff  (m^3) gs  (Hz) g=gs√N (GHz)

#1 Meander 8.7 2.2·10-12 11 1.0

Copl. 20 μm 9.55 9.3·10-11 6.7 4.2

Copl. 600 μm 7.08 3.97·10-10 1.1 1.4

#2 Meander 8.7 7.9·10-12 11 2.0

Copl. 20 μm 9.55 1.9·10-10 6.7 5.9

Copl. 600 μm 7.08 1.5·10-9 1.1 2.8



Modelling.
• Q-Rabi hamiltonian:


• direct numerical diagonalization with n magnetic modes


• Analytical solution without RWA:


•

Salvatore Savasta 
Omar Di Stefano 
Alberto Mercurio



transmission spectra & best fit
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g1/ωc >0.1


USC achieved! 



Effect of diamagnetic term 
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Multi-mode coupling using meander resonator

• Input-output formalism:



adapted from Forn-Diaz et al Rev. Mod. Phys. 91, 025005 (2019)

Evolution of g/ω over last 20 years

USC

DEEP USC

YIG

Radicals 
and VOPc

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.025005
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New Phenomena & Applications in USC regime

fast and protected QIP

nonlinear optics 

superradiance

 enhancement of quantum phenomena



New Phenomena & Applications

fast and protected QIP
storage & retrieval of MW pulses

nonlinear optics 

superradiance

 enhancement of quantum phenomena

C. Bonizzoni et al. NPJ Quantum Inf. 6, 68 (2020) 

echoes from Molecular Spin Ensemble



New Phenomena & Applications 

fast and protected QIP

nonlinear optics 
fluorescence

superradiance

 enhancement of quantum phenomena

pump

readout

preliminary tests 

(C. Bonizzoni, A. Ghirri, M. Maksutoglu, M. Affronte)
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nonlinear optics 
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LETTERS NATURE PHYSICS

We can study the nonlinear scaling of the emitted photon radia-
tion intensity, as expected from Dicke superradiance, by tuning 
either one, two, three or four NV subensembles in resonance with 
the cavity mode and thus changing the number of spins coupled 
from about 0.38 to 1.5 ×  1016. In Fig. 4a we show the correspond-
ing measurement data for the emitted intensity where the delay of 
the superradiant burst is maximum for each of these four cases. By 
determining the maximum values of the intensities of the super-
radiant bursts and plotting them as a function of the number of 
spins coupled (Fig. 4b), we observe the dependence I ∝  N1.52. This  
nonlinear scaling, as expected from a superradiantly enhanced 
decay11,35, clearly demonstrates the superradiant nature of the emit-
ted photon burst.

Our system can be described by the driven Tavis–Cummings 
Hamiltonian36, which gives the dynamics of N spins coupled to a 
quantized field mode. In the fast cavity limit it is straightforward 

(details in Methods) to derive an equation of motion for the inver-
sion of the spins as

η
κ γ κ⟨ ̇ ⟩ = − ⟨ ⟩− ⟨ ⟩ + − ⟨ ⟩∣∣ + −S
g

S S N
g

S S
4

( )
4 (1)z y z

2

where η is the drive amplitude, κ the decay rate of the cavity inten-
sity, g the coupling rate of a single spin to the cavity mode, γ|| the 
longitudinal decay rate and Sx,y,z, S± the collective spin operators.

Analysing equation (1), it is apparent that the cavity provides an 
enhancement of the spontaneous emission for the undriven system 
(η =  0), known as the Purcell factor37. This Purcell factor 4g2/κ is 
increased by emerging correlations in the spin system during the 
decay of the inverted spin ensemble with a maximum proportional-
ity of S+S− ∝  N2 (derived in Methods). For our typical system param-
eters this enhances the small Purcell factor of ΓP/2π  ≈  8 ×  10−10 Hz 
by about 16 orders of magnitude to a value of several megahertz. 
The enhancement is clearly visible from the measurement data as 
displayed in blue in Fig. 3b, where we observe a spin decay with 
a maximum rate of Γsr/2π  ≈  17 MHz, much faster than the Purcell-
enhanced decay of a single spin.
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Fig. 3 | Dynamics of the superradiant decay. a, Close to the region 
where the inversion Sz is zero and the spin quantum number is maximum, 
correlations in the spin system lead to an enhanced photon emission 
rate Γ!∝ !N2 (note that we assume an S!= !1/2 system here). Uncorrelated 
emission Γ!∝ !N governs the decay for the excited spin system. Dephasing 
decreases the spin quantum number and evolves the system out of the 
purely symmetric subspace. Superradiance also occurs in these partly 
dephased inner shells, but the fully symmetric ground state is no longer 
reached after the decay. Further, the number of photons emitted during the 
superradiant decay becomes smaller. b, The red measurement curve shows 
a detailed view of the trace for the emitted photon intensity with three NV 
subensembles in resonance with the cavity and where the inversion of the 
spin ensemble is maximum (depicted as a black dashed line in Fig. 2). The 
shaded area is the time for which the excitation drive is turned on. Shown 
in blue is the dynamics of the spin inversion, measured using the optical 
transition of the NV centre and the inversion polarization normalized to  
the number of spins. The error bars are the s.d. of the measured 
fluorescence. The inset shows the measurement sequence with microwave 
(MW) excitation and optical readout pulses. After maximum inversion  
is reached the spins remain in a metastable state until fluctuations lead  
to a stimulated superradiant decay. This is accompanied by a burst of 
photons that builds up in the cavity mode. The blue solid line represents  
a fit of the fluorescence data according to a hyperbolic tangent11,43 as 
derived in Methods.
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Fig. 4 | Nonlinear scaling of the emitted radiation intensity. a, By bringing 
either N, 2N, 3N or 4N spins into resonance with the cavity mode we are  
able to measure the dependence of the emitted photon intensity on the 
number of spins. Depicted here are the traces for each of these cases  
where maximum inversion is reached, and a microwave drive duration of 
50!ns, with the blue dots indicating the maximum power of the emitted 
radiation intensity. b, By measuring the maximum value of the emitted 
intensity we observe the nonlinear scaling ∣ ∣ ∝A N2 1.52. The dashed grey lines 
show N and N2 scaling. The error bars are the standard errors of the mean on 
the emitted power, with the red shaded area the 95% confidence interval of 
the fit. c, The delay and the width of the superradiant burst as functions of 
the number of spins. Error bars, s.d. of amplitude and delay. The width of the 
pulse can be modelled by equation (12) in Methods, and shows the expected 
1/N dependence11 (see the red dashed line). The delay of the burst does not 
closely follow equation (9), since it is very sensitive to small deviations in the 
inclination angle, which are experimentally hard to prevent. Further, for smaller 
number of spins the theoretically predicted delay is much longer (> 5) than 
other decay mechanisms driving the spins out of the metastable state earlier.
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measurement data in Fig. 3. If we further increase the input power, 
the delay of this photon burst becomes shorter, because excess pho-
tons from the drive pulse keep interacting with the spin ensemble. 
This stimulates the emission of photons and drives the spins out 
of their metastable state earlier. The dependence of the delay on 
this tipping angle θ is given by td ≈  Γsrlog[tan2(θ/2)] as derived in 
Methods and shown in Fig. 2 as a green dashed line. For smaller 
drive powers (< − 5 db attenuation of the maximum input power) we 
observe a similar behaviour, as a pulse exits the cavity earlier than 
for full inversion. In this case the number of photons in the exci-
tation pulse is insufficient to invert the spin ensemble, again lead-
ing to an earlier emission. Due to inhomogeneous broadening, the 
intensity of these emitted pulses is smaller than for large drive pow-
ers. After driving the system and while emptying the cavity mode, 
the spins remain in a state with a high polarization (S_) value for 
an extended period of time. Dephasing and decoherence are most 
prominent here and reduce the signal intensity.

Since superradiance is the enhanced coherent decay of the 
inverted spin system, it is instructive to measure the polarization 

inversion of the ensemble during this decay. The NV centre pos-
sesses an optical transition, which enables a direct measurement of 
the spin polarization by optically detected magnetic resonance31,32. 
We implement optically detected magnetic resonance in our exper-
iment at ultra-low (mK) temperatures by illuminating parts of the 
sample using 20 ns long optical pulses delivered through an optical 
(multimode) fibre and collect the scattered fluorescence with the 
same fibre (see Methods for details). The fluorescence level then 
gives a direct measurement for Sz. By varying the time delay of  
the laser readout pulse with respect to the microwave pulse set  
for maximum inversion of the spin system, a time-resolved mea-
surement of the inversion is obtained. We measure the micro-
wave cavity output and the scattered fluorescence simultaneously 
(details of the measurement are presented in Methods). As can 
be seen from the blue measurement data in Fig. 3, the inverted  
spin ensemble stays in its metastable state for approximately  
200 ns before thermal and vacuum fluctuations stimulate the decay 
of the spins and the emission of microwave photons in a character-
istic superradiant burst, as depicted in red in Fig. 3b. During drive 
and decay, dephasing evolves some spins into a subradiant state 
(see Fig. 3a). This has the effect that we do not reach full inversion 
after the drive pulse and the spins do not decay back into the fully 
symmetric ground state after the superradiant decay, with 5% inco-
herent inversion remaining. Dephasing also reduces the number 
of photons emitted during the superradiant burst. These dephas-
ing effects are evident from the fluorescence level, which does not 
reach the initial level after the superradiant burst (Fig. 3b). The 
remaining incoherent excitation decays either through single-spin 
Purcell-enhanced spontaneous emission33 (ΓP/2π  ≈  8 ×  10−10 Hz) or 
by longitudinal relaxation mediated by spin–phonon interactions34 
(γ||/2π  ≈  3 ×  10−5 Hz), with the latter dominating in our solid-state 
spin system.
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Fig. 1 | Experimental setup. a, Our hybrid system consists of a 3D lumped 
element resonator (rendering without the top lid and the side walls) bonded 
with a diamond sample in combination with the laser readout scheme and 
the microwave setup operating at 25!mK in a dilution refrigerator. A 3D 
Helmholtz coil configuration provides magnetic fields in arbitrary directions 
with field strengths up to 200!mT. A fibre is glued to one side of the 
diamond sample to apply optical readout pulses and collect the scattered 
fluorescence, with a dichroic mirror to separate them. The microwave 
setup consists of a standard autodyne detection scheme with two mixers 
for (de-)modulation of the I/Q-signal. b, The diamond lattice shows four 
different orientations for a given vacancy, resulting in four possible different 
NV directions (labelled I–IV). c, The Zeeman tuning of the NV levels by an 
external magnetic field is given by the projection of the magnetic field on 
the spins’ principal axis. This allows us to bring either one, two, three or four 
NV subensembles into resonance with the cavity mode (ωc), by applying 
appropriate magnetic fields in the [1,!1,!1], [1,!1,!0] and [1,!0,!0] directions.
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Fig. 2 | Cavity response under varying drive powers. The response  
after applying a coherent microwave pulse of 50!ns with three NV 
subensembles in resonance with the cavity. The colour bar shows the 
emitted intensity ∣ ∣A 2. At a power level approximately equal to − 5!db 
attenuation of the maximum power (indicated with a black dashed line) we 
achieve maximum inversion and observe a pulse emitted from the cavity 
(green dotted line). For higher powers the delay of this emitted  
pulse becomes shorter, since excess photons in the cavity lead to 
stimulated emission. The dependence of the delay on this tipping angle 
is fitted by equation (9) as derived in Methods. The inset shows the 
fluorescence collected from the scattered light of the NV ensemble 50!ns 
after the drive pulse is switched off. This driven Rabi-like measurement 
confirms that we reach maximum inversion (lowest fluorescence) for − 5!dB 
attenuation of the maximum input power. The error bars are the s.d. of the 
measured fluorescence.
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Superradiance is a fundamental collective effect where 
radiation is amplified by the coherence of multiple emit-
ters1. Superradiance plays a prominent role in optics (where 
it enables the design of lasers with substantially reduced 
linewidths2,3) and quantum mechanics4, and is even used to 
explain cosmological observations such as Hawking radiation 
from black holes5. Resonators coupled to spin ensembles6–8 
are promising future building blocks of integrated quantum 
devices that will involve superradiance. As such, it is impor-
tant to study its fundamental properties within such devices. 
Although experiments in the strong-coupling regime have 
shown oscillatory behaviour in these systems9,10, a clear sig-
nature of Dicke superradiance has so far been missing. Here 
we explore superradiance in a system composed of a three-
dimensional lumped element resonator in the fast cavity 
limit inductively coupled to an inhomogeneously broadened 
ensemble of nitrogen–vacancy centres. We observe a superra-
diant pulse being emitted a trillion times faster than the decay 
for an individual nitrogen–vacancy centre. This is further con-
firmed by the nonlinear scaling of the emitted radiation inten-
sity with respect to the ensemble size. Our work provides the 
foundation for future quantum technologies including solid-
state superradiant masers2.

Proposed by Dicke in 19541, superradiance is a collective effect 
enhancing the radiative decay dynamics of multiple excited emitters 
such that their decay is much faster than the individual emission 
rates—hence the name superradiance. Correlations that build up 
during the decay lead to a nonlinear scaling of the emitted radia-
tion intensity with respect to the number of excited emitters11. The 
effect of decoherence and dephasing in the system have to occur 
on a timescale longer than the relevant system dynamics such that 
coherence can be maintained throughout the decay12, which has 
made superradiance difficult to observe. Experiments in a num-
ber of different systems have been carried out in a regime where 
dephasing effects are suppressed using a few qubits13–16, by taking 
advantage of special symmetries in the sample geometry17,18, or in 
Bose–Einstein condensates19 and optical lattices3,20,21. A different 
approach is to use a resonator to decrease the mode volume of the 
electromagnetic field9,10,13,22,23, which enhances the coupling when 
compared with dephasing mechanisms such as broadening induced 
by dipolar interaction. To realize conditions close to those seen for 
superradiance in vacuum, the system needs to operate in the fast 

cavity limit, where the cavity decay rate is larger than all other time 
constants in the system24–26, or in the dispersive regime27,28.

A suitable model system is an ensemble of negatively charged 
nitrogen–vacancy (NV) centres in diamond, coupled to a micro-
wave resonator operating in the fast cavity limit. Our measurements 
described below show both the nonlinear emission of radiation 
from the fast cavity, while optical readout of the spin system con-
firms an enhanced decay rate a trillion times faster compared to the 
lifetime of a single NV centre. These observations are clear signa-
tures of superradiance.

In our experiment, as illustrated in Fig. 1, we use a dense ensemble 
of NV centres with a narrow spectral linewidth of γ ∕ π ≈ .⊥ 2 4 7 MHz*  
(full-width at half-maximum, FWHM) to reduce dephasing effects 
originating from inhomogeneous broadening29. The sample is 
placed in a three-dimensional (3D) lumped element resonator30 
with a fundamental frequency of 3.18 GHz and a cavity linewidth 
of κ/2π  =  13.8 MHz (FWHM) corresponding to a quality factor of 
Q =  230. The resonator focuses the magnetic field such that the 
spins are homogeneously coupled to the cavity mode with almost 
no spatial dependence on the coupling rate. This allows us to per-
form coherent operations on the entire spin ensemble (~1016 spins) 
and achieve inversion using short microwave pulses, as illustrated in  
Fig. 1. Operating in the fast cavity limit ensures that the cavity 
increases the effective coupling to the spin system, but at the same 
time realizes conditions similar to superradiance in vacuum24. To 
meet the requirements necessary for the fast cavity limit, we ensure 
that the photon lifetime in the cavity of τc ≈  11 ns is shorter than any 
of the occurring system dynamics.

We begin our exploration of this hybrid system by driving the 
spins with a 50 ns long pulse and measure the emitted radiation 
intensity from the cavity as a function of the input power as pre-
sented in Fig. 2. For low power levels the system primarily remains 
in the ground state, corresponding to the behaviour in the low-
excitation (boson-like) regime. For a certain threshold power we 
achieve maximum inversion, indicated by the black dashed line in 
Fig. 2. At this point the system is in a metastable state—comparable 
to a classical pendulum turned upside down. The coupling of the 
spin system to the cavity mode is suppressed and it remains in this 
state for an extended period of time. In this metastable state the 
excitations reside in the spin system with the cavity mode empty. 
Approximately 300 ns after we switch off the microwave excitation, 
we observe a burst of photons exiting the cavity, depicted as red  
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systems suffer from large relaxation rates manifested in
poor cooperativity [16–18]. Also, demonstrated coupling
still is insufficient for verification of the interaction model,
as the Dicke model is subjected to the super-radiant phase
transition.

In this work, ultrastrong photon-to-magnon coupling
is demonstrated in on-chip thin-film hybrid structures
with coupling strength exceeding g/2π ! 6 GHz, cou-
pling ratio g/ω ≈ 0.6, single-spin coupling strength gs ≈
350 Hz, and cooperativity about 104. Strong characteris-
tics of coupling are achieved with on-chip multilayered
hybrid film structures owing to a radical suppression of
the photon phase velocity in an electromagnetic resonator.
With achieved coupling ratio g/ω ≈ 0.6 ∼ 1, the system
approaches the deep-strong coupling regime. In this cou-
pling regime, it is verified that the Dicke model is inappli-
cable and super-radiance does not take place. Instead, the
spectrum clearly evidences a contribution of the diamag-
netic A2 interaction term in the Hamiltonian of the system,
which satisfies the Thomas-Reiche-Kuhn sum rule. The
contribution of the A2 term verifies the validity of the most
general Hopfield light-matter interaction model [1,5,7,27]
and manifests observation of a different hybrid polariton
quasiparticle, namely the plasmon-magnon polariton.

II. EXPERIMENTAL DETAILS

A schematic illustration of the investigated hybrid
systems is shown in Fig. 1. The system consists of
a superconducting (S) thin-film coplanar waveguide
(CPW) with a series of multilayered rectangular insu-
lator/ferromagnet/superconductor (I-F-S) thin-film het-
erostructures placed directly on the central transmission
line. The waveguide is fabricated out of superconduct-
ing niobium (S = Nb) film of thickness 300 nm deposited
on top of Si-SiOx substrate using magnetron sputtering
of Nb, optical lithography, and plasma-chemical etching
techniques; the waveguide has a 50-# impedance and
center-gap-center dimensions of 82-150-82 µm. Multilay-
ered thin-film heterostructures are fabricated with lateral
dimensions L × W = 1100 × 130 µm2 out of supercon-
ducting niobium (S = Nb), ferromagnetic permalloy (F =
Py = Fe20Ni80), and insulating (I = AlOx) layers using
optical lithography, magnetron sputtering, and lift-off tech-
niques. Thicknesses d of the layers are dI = 13, dF = 25,
and dS = 230 nm. Deposition of these layers is performed
in a single vacuum cycle. The waveguide is folded to a
meander, and multilayered heterostructures are fabricated
in a series of 40 identical structures for enhancement of
total microwave response.

In general, the system should be viewed as a combi-
nation of two interacting subsystems [18]. The first sub-
system is the electromagnetic resonator that is formed
between two superconducting layers separated by the

FIG. 1. Schematic illustration of the investigated chip sam-
ple. A series of insulator-ferromagnet-superconductor (I-F-S)
film rectangles is placed directly on top of the central transmis-
sion line of superconducting (S) waveguide. Magnetic field H is
applied in plane along the x axis. Microwave (MW) transmission
is indicated with MW in and MW out. Blue curve and blue arrows
indicate the magnetic field component of the λ/2 standing elec-
tromagnetic Swihart wave, which is induced by superconducting
sheet currents Js in Nb layers oscillating along the x direction
(red arrows). Spins in the ferromagnetic layer are indicated with
orange arrows.

insulator. Photon phase velocity in such a resonator is sub-
stantially suppressed and is referred to as Swihart velocity
c = c0

√
dI/εI (2λL + dI + dF), where c0 is the velocity of

light, dI(F) is the thickness of the insulating (ferromag-
netic) layer, εI is the dielectric constant of the I layer, and
λL is the London penetration depth of S layers. Blue curve
and blue arrows in Fig. 1 indicate the magnetic field com-
ponent of the λ/2 standing electromagnetic Swihart wave,
which is induced by superconducting sheet currents Js in
Nb layers oscillating along the x direction (red arrows).
The λ/2 resonance frequency of the Swihart resonator
can be estimated as ωS0

r = c/λ = 0.007c0/2L = 9.7 GHz,
where the dielectric constant of AlOx is εI = 10 and the
London penetration depth of Nb is λL = 80 nm. The
second resonant subsystem is the conventional ferromag-
netic film resonator placed inside the microwave resonator.
Orange arrows in Fig. 1 indicate resonant precession of fer-
romagnetic spins with different amplitudes. Interaction of
the Swihart standing wave with spins in the ferromagnetic
layer results in level repulsion of resonance lines.

In addition to the main studied sample an evidence
I/F/S multilayer sample is fabricated in the same depo-
sition cycle with different lateral dimensions L × W =
50 × 130 µm2. Dimensions of the evidence sample ensure
no Swihart resonances in the frequency range of interest.
This sample is used for confirmation of ferromagnetic res-
onance (FMR) properties [28]. The experimental chip is
installed in a copper sample holder and wire-bonded to a
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printed circuit board equipped with subminiature rf con-
nectors. A thermometer and a heater are attached directly
to the holder for precise temperature control. The holder is
placed in a superconducting solenoid inside a closed-cycle
cryostat (Oxford Instruments Triton, base temperature of
1.2 K). An external magnetic field is applied along the x
axis.

The response of experimental samples is studied by ana-
lyzing the transmitted microwave signal S21(f , H) with a
vector network analyzer (Rohde & Schwarz ZVB20). For
removal of parasitic box resonance modes from consider-
ation, all measured spectra S21(f , H) are first normalized
with S21(f ) at µ0H = 0.3 T, and then differentiated numer-
ically with respect to H , since box modes show no depen-
dence of parasitic resonance frequencies on magnetic field.
The response of experimental samples is studied in the
field range from −0.22 to 0.22 T, in the frequency range
from 0 to 20 GHz, and in the temperature range from 1.7
to 11 K.

III. EXPERIMENTAL RESULTS

Figure 2 shows the transmission spectrum of the sample
at temperature T = 1.7 K well below the superconduct-
ing critical temperature of Nb (Tc ≈ 9.1 K). The spectrum
consists of five resonance lines that can be identified as
follows [18]: (i) S+ and S− lines are the level-repulsion
resonance lines, which represent coherent polaritonic inter-
action between the electromagnetic Swihart resonator and
the ferromagnetic layer; (ii) F line indicates the FMR,
which emerges due to FMR absorption at edge areas
of the permalloy rectangle [18]; and (iii) additional S′

and S′′ lines are signatures of higher-order oscillations.
Ultrastrong coupling between the electromagnetic and fer-
romagnetic resonators g/2π is represented by large fre-
quency split between repulsed S+ and S− lines exceeding
10 GHz in comparison with estimated Swihart resonance
frequency of 9.7 GHz. Ultrastrong coupling is achieved
owing to (i) reduced magnetic volume Vm of the Swi-
hart electromagnetic resonator g ∝ 1/

√
Vm [12,14,16–18]

due to suppressed velocity of light c and (ii) maximized
amplitude of microwave magnetic field in the F layer [18].
At T > Tc all spectral lines except the F line vanish; the
position of the F line remains unchanged.

Individually, electromagnetic and ferromagnetic res-
onators follow known dependencies on magnetic field. The
FMR line (F line) represents the magnon eigenfrequencies
and follows the typical dependence of the FMR frequency
of a thin film on in-plane external magnetic field:

[ωF
r (H)/µ0γ ]2 = Heff(Heff + Meff), (1)

where µ0 is the vacuum permeability, γ is the gyromag-
netic ratio, Heff = H + Ha is the in-plane effective field,
which includes the in-plane anisotropy term Ha along

×

×

×

×

×

×

FIG. 2. Microwave transmission spectrum dS21(f , H)/dH of
the studied sample measured at a temperature below the super-
conducting critical temperature. Black arrow indicates the level
repulsion of about 12 GHz.

the applied field, and Meff is the effective magnetization
field. Modeling of the F line with Eq. (1) at different
temperatures yields magnetic parameters that are typical
for permalloy: anisotropy field µ0Ha ≈ 1 mT, effective
magnetization µ0Meff ≈ 1.05 T, and no significant depen-
dence of these parameters on temperature [28]. The elec-
tromagnetic Swihart resonance ωS

r represents the photon
eigenfrequency and follows the dependence on field [18]:

ωS
r (H) = ωS0

r /
√

1 + αH 2, (2)

where α is a free parameter and ωS0
r /2π ≈ 9.7 GHz is the

zero-field Swihart resonance frequency.
The S′ and S′′ lines are signatures of higher-order oscil-

lations. Typically, a spectrum of a hybrid system that
consists of two coupled harmonic oscillators contains only
two polariton branches. However, in the case of sufficiently
strong coupling the spectrum can incorporate additional
lines in the range between the anticrossing lines that appear
as a result of hybridization of higher-order photon or
magnon modes [3,14,15]. According to the dispersion for
magnetostatic waves in superconductor/ferromagnet mul-
tilayers [29,30], higher-order magnon modes do not differ
in frequency from the F line due to small kdF product,
where k is the wave number of the standing magnetostatic
wave. Therefore, S′ and S′′ lines reflect the interaction of
magnons with higher-order photon modes. The latter are
the Swihart standing wave resonances with wavelength
nλ/2 = L, where n is an integer. Importantly, the cou-
pling strength g is expected to be unchanged [18] since for
higher-order photon modes the thin-film geometry is pre-
served, and, therefore, the single-spin coupling strength is
also preserved. These statements are confirmed below.
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coherent interaction between the qubit and the Kittel mode (15). The
qubit-magnon coupling strength gq-m of 7.79MHz, obtained from the
magnon-vacuum Rabi splitting of the qubit (Fig. 1C), is much larger
than both the power-broadened qubit linewidth gq/2p = 1.74 MHz
and the magnon linewidth gm/2p= 1.3 MHz.

We now investigate the dispersive regime of our hybrid system,
where the detuning between the bare qubit and Kittel mode fre-
quencies, |wq

bare − wm
bare|, is much larger than gq-m. The exchange

of quanta of excitations between the qubit and the Kittel mode,
through virtual photons in the coupler cavity mode, is then highly
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Fig. 1. Hybrid system and qubit-magnon coherent interaction. (A) Schematic illustration of a ferromagnetic YIG sphere and a superconducting transmon qubit inside
a three-dimensional microwave cavity. A magnetic field B0 is applied to the YIG sphere using permanent magnets and a coil. The magnetostatic mode in which spins
uniformly precess in the ferromagnetic sphere, or the Kittel mode, couples to the magnetic field of the cavity modes. The qubit and the Kittel mode interact through virtual
excitations in the cavity modes at a rate gq-m. (B) The spectrum of the qubit is measured by probing the change of the reflection coefficient Re(Dr) of a microwave
excitation resonant, with the probe mode at frequency wp as a function of the spectroscopy frequency ws and the coil current I, changing the magnetic field at the
ferromagnet. The avoided crossing indicates a coherent interaction between the qubit and the Kittel mode. Vertical dashed lines indicate that I = −4.25 mA, where
the qubit and the Kittel mode are hybridized (Fig. 1D), and that I = −5.02 mA, where the qubit-magnon interaction is in the dispersive regime (Figs. 2 to 4). (C) Magnon-
vacuum Rabi splitting of the qubit on resonance, with the Kittel mode at I = −4.25 mA. From the fit, we extract the qubit-magnon coupling rate gq-m/2p = 7.79 MHz.
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Fig. 2. Dispersive qubit-magnon interaction. (A) Schematic illustration of the hybrid system in the strong dispersive regime. A microwave excitation at frequency
wmw is used to create a magnon coherent state in the Kittel mode. The excitation is detuned from the magnon frequency, with the qubit in the ground state, wm

g, by
Dmw = wm

g − wmw. In the strong dispersive regime, magnon number states |nm〉 (of probability distribution pnm ) are mapped into the qubit spectrum as peaks at
frequencies w̃ nmð Þ

q ¼ w nmð Þ
q þ nm∆mw, separated by 2cq-m + Dmw and with a spectral weight closely related to pnm . (B) Measurement of the qubit spectrum for a coil

current I = −5.02 mA as a function of the Kittel mode excitation frequency wmw and the spectroscopy frequency ws. The excitation frequency producing the maximum
magnon-induced ac Stark shift of the qubit from wq (horizontal dashed line) yields an estimation of wm

g/2p ≈ 7.95 GHz (vertical dashed line). The Kittel mode spectrum,
measured via its dispersive interaction with the probe mode, appears as a faint vertical line at ~7.95 GHz. The signature corresponding to the two-photon transition
involving both the spectroscopy and the excitation photons and exciting both the qubit and a magnon (fig. S1) is indicated by the diagonal dashed line given by
ws ¼ w nm¼0ð Þ

q þ 2cq‐m þ Dmw, calculated with cq-m/2p = 1.5 MHz at wm
g/2p = 7.95 GHz.
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suppressed. The dispersive part of the qubit-magnon Hamiltonian
is then given by

Ĥq‐m
disp ¼ ℏcq‐m

^sz ĉ
†ĉ ð1Þ

where ŝ z ¼ e〉〈e $ g〉〈gjjjj , with |g(e)〉 the ground (excited) state of
the transmon qubit, ĉ† (ĉ) is the magnon creation (annihilation)
operator, and cq-m is the qubit-magnon dispersive shift (4, 16). This
dispersive interaction makes the qubit and magnon frequencies
dependent on the state of the other system. More precisely, the
qubit frequency wq

(nm) depends on the magnon number state |nm =
{0, 1, 2, …}〉, and the magnon frequency wm

i depends on the trans-
mon state |i = {g, e, f, …}〉. As illustrated in Fig. 2A, the strong
dispersive regime, where |2cq-m| > max[gq,gm], enables the observa-
tion of magnon number states |nm〉 via magnon number–dependent
ac Stark shift of the qubit frequency (17, 18).

The qubit-magnon dispersive regime is investigated through
spectroscopic measurements of the qubit while exciting the Kittel
mode at frequency wmw, detuned by Dmw = wm

g − wmw from the
dressed magnon frequency wm

g. The measurement of the qubit spectrum
while sweeping wmw for a coil current of −5.02 mA and a Kittel mode
excitation power Pmw of 7.9 fW is shown in Fig. 2B. Near resonant ex-
citation Dmw ~ 0, the qubit is ac Stark–shifted by the magnon occupan-
cy in the Kittel mode, a signature of the qubit-magnon dispersive
interaction similar to the qubit-photon counterpart in circuit quantum
electrodynamics experiments (17, 27). The positive magnon-induced
ac Stark shift shows that cq-m > 0, and the excitation frequency
producing the maximum shift indicates that wm

g/2p ≈ 7.95 GHz.
Both these features are consistent with the hybrid system being in
the straddling regime (fig. S1) (21, 28). Notably, the signature
corresponding to the two-photon transition, from |g, nm = 0〉 to |e,
nm = 1〉, involving both the spectroscopy and the excitation photons
and exciting both the qubit and a magnon (fig. S1), is also visible at
ws ¼ wðnm ¼ 0Þ

q þ 2cq‐m þ Dmw.
We now focus on resolving the magnon number states through

measurements with the excitation frequency close to resonance with
the Kittel mode (Dmw≪gm). In the qubit spectra shown in Fig. 3, the
excitation frequency is fixed at 7.95 GHz, close to resonance with wm

g

for I = −5.02 mA (Fig. 2B). The microwave excitation creates a mag-
non coherent state in the Kittel mode. When coherently driving the
Kittel mode, we observe peaks in the qubit spectrum at frequencies
higher than the zero-magnon peak. As shown next, these peaks cor-
respond to different numbers of magnons in the Kittel mode.

To fit the data of Fig. 3, we used an analytical model of the
spectrum of a qubit dispersively coupled to a harmonic oscillator
(17). The asymmetric qubit line shape at Pmw = 0 is well repro-
duced by including in the fit the photonic contribution to the qubit
line shape from the dispersive interaction between the qubit and the
probe mode (section S4). The fitting parameters for each excitation
power are the occupancy of the Kittel mode !ngm ¼ 〈n̂mP̂

g
q〉 (where

P̂g
q ¼ g〉〈gjj is the projector to the qubit ground state), the qubit-

magnon dispersive shift (cq-m), and the excitation detuning
(Dmw) (Fig. 3A). More information on the theory and the fitting
procedure canbe found in sections S3 to S5.We find a detuningDmwof
−0.38MHz, indicating a baremagnon frequencywm

bare of 7.9515GHz.
The condition for the dispersive regime is therefore respected with a
detuning |wq

bare−wm
bare| of89MHz,much larger than thequbit-magnon

coupling strength. The qubit-magnon dispersive shift cq-m is found

to be 1.5 ± 0.1 MHz, in good agreement with the theoretical value of
1.27 MHz (fig. S1). Resolving magnon number states demonstrates
thatwehavereachedthestrongdispersiveregimeofquantummagnonics,
with the dispersive shift per magnon 2cq-m being larger than both the
power-broadened qubit linewidth gq/2p = 0.78 MHz and the magnon
linewidth gm/2p = 1.3 MHz.

The average number of magnons !ng
m in the Kittel mode extracted

from the fit of the data is shown in Fig. 4A. At the lowest excitation
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Fig. 3. Resolving magnon number states. (A) Measurements of the qubit
spectrum at different Kittel mode excitation powers Pmw for a coil current of −5.02mA
and Kittel mode excitation frequency of 7.95 GHz. Black lines show fits of the data to
the spectrum of a qubit dispersively coupled to a harmonic oscillator. Color-coded
shaded areas show components of the spectrum corresponding to different photon
number states |np〉 of the probe cavity mode and magnon number states |nm〉.
Vertical offsets are shown by horizontal dashed lines. (B) Measured qubit spectra
as a function of Pmw. For clarity, after subtracting a power-dependent offset, Re(Dr)
is normalized relative to its maximum for each drive power. For both (A) and (B),
vertical dashed lines indicate the frequencies of the qubit |g〉 ↔ |e〉 transitions
corresponding to the first four magnon number states, neglecting a power-
dependent ac Stark shift, which is small relative to the dispersive shift per magnon
for this range of Pmw.
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coherent interaction between the qubit and the Kittel mode (15). The
qubit-magnon coupling strength gq-m of 7.79MHz, obtained from the
magnon-vacuum Rabi splitting of the qubit (Fig. 1C), is much larger
than both the power-broadened qubit linewidth gq/2p = 1.74 MHz
and the magnon linewidth gm/2p= 1.3 MHz.

We now investigate the dispersive regime of our hybrid system,
where the detuning between the bare qubit and Kittel mode fre-
quencies, |wq

bare − wm
bare|, is much larger than gq-m. The exchange

of quanta of excitations between the qubit and the Kittel mode,
through virtual photons in the coupler cavity mode, is then highly
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Fig. 1. Hybrid system and qubit-magnon coherent interaction. (A) Schematic illustration of a ferromagnetic YIG sphere and a superconducting transmon qubit inside
a three-dimensional microwave cavity. A magnetic field B0 is applied to the YIG sphere using permanent magnets and a coil. The magnetostatic mode in which spins
uniformly precess in the ferromagnetic sphere, or the Kittel mode, couples to the magnetic field of the cavity modes. The qubit and the Kittel mode interact through virtual
excitations in the cavity modes at a rate gq-m. (B) The spectrum of the qubit is measured by probing the change of the reflection coefficient Re(Dr) of a microwave
excitation resonant, with the probe mode at frequency wp as a function of the spectroscopy frequency ws and the coil current I, changing the magnetic field at the
ferromagnet. The avoided crossing indicates a coherent interaction between the qubit and the Kittel mode. Vertical dashed lines indicate that I = −4.25 mA, where
the qubit and the Kittel mode are hybridized (Fig. 1D), and that I = −5.02 mA, where the qubit-magnon interaction is in the dispersive regime (Figs. 2 to 4). (C) Magnon-
vacuum Rabi splitting of the qubit on resonance, with the Kittel mode at I = −4.25 mA. From the fit, we extract the qubit-magnon coupling rate gq-m/2p = 7.79 MHz.
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Fig. 2. Dispersive qubit-magnon interaction. (A) Schematic illustration of the hybrid system in the strong dispersive regime. A microwave excitation at frequency
wmw is used to create a magnon coherent state in the Kittel mode. The excitation is detuned from the magnon frequency, with the qubit in the ground state, wm

g, by
Dmw = wm

g − wmw. In the strong dispersive regime, magnon number states |nm〉 (of probability distribution pnm ) are mapped into the qubit spectrum as peaks at
frequencies w̃ nmð Þ

q ¼ w nmð Þ
q þ nm∆mw, separated by 2cq-m + Dmw and with a spectral weight closely related to pnm . (B) Measurement of the qubit spectrum for a coil

current I = −5.02 mA as a function of the Kittel mode excitation frequency wmw and the spectroscopy frequency ws. The excitation frequency producing the maximum
magnon-induced ac Stark shift of the qubit from wq (horizontal dashed line) yields an estimation of wm

g/2p ≈ 7.95 GHz (vertical dashed line). The Kittel mode spectrum,
measured via its dispersive interaction with the probe mode, appears as a faint vertical line at ~7.95 GHz. The signature corresponding to the two-photon transition
involving both the spectroscopy and the excitation photons and exciting both the qubit and a magnon (fig. S1) is indicated by the diagonal dashed line given by
ws ¼ w nm¼0ð Þ

q þ 2cq‐m þ Dmw, calculated with cq-m/2p = 1.5 MHz at wm
g/2p = 7.95 GHz.
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Conclusions and perspectives

• Spin wave modes in in-plane magnetised YIG films excited by narrow CPW lines


• Achievement of the Ultra Strong Coupling regime with coupling ratios exceeding 0.2 


• Hybridisation of multiple spin wave and resonator modes
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